Modern quantum theory introduces quantum
structures (decompositions into subsystems) as a new discourse that is not
fully comparable with the classical-physics counterpart. To this end, so-called
Entanglement Relativity appears as a corollary of the universally valid quantum
mechanics that can provide for a deeper and more elaborate description of the
composite quantum systems. In this paper we employ this new concept to describe
the hydrogen atom. We offer a consistent picture of the hydrogen atom as an
open quantum system that naturally answers the following important questions: 1)
how do the so called “quantum jumps” in atomic excitation and de-excitation
occur? and 2) why does the classically and seemingly artificial “center-of-mass
relative degrees of freedom” structure appear as the primarily operable form
in most of the experimental reality of atoms?
Cite this paper
Jeknic-Dugic, J. , Dugic, M. , Francom, A. and Arsenijevic, M. (2014). Quantum Structures of the Hydrogen Atom. Open Access Library Journal, 1, e501. doi: http://dx.doi.org/10.4236/oalib.1100501.
Dugic, M. and Jeknic, J. (2006) What Is “System”: Some Decoherence-Theory Arguments. International Journal of Theoretical Physics, 45, 2249-2259. http://dx.doi.org/10.1007/s10773-006-9186-0
Ciancio, E., Giorda, P. and Zanardi, P. (2006) Mode Transformations and Entanglement Relativity in Bipartite Gaussian States. Physics Letters A, 354, 274-280. http://dx.doi.org/10.1016/j.physleta.2006.01.059
Dugic, M. and Jeknic-Dugic, J. (2008) What Is “System”: The Information-Theoretic Arguments. International Journal of Theoretical Physics, 47, 805-813. http://dx.doi.org/10.1007/s10773-007-9504-1
De la Torre, A.C., et al. (2010) Entanglement for All Quantum States. European Journal of Physics, 31, 325-332. http://dx.doi.org/10.1088/0143-0807/31/2/010
Harshman, N.L. and Wickramasekara, S. (2007) Galilean and Dynamical Invariance of Entanglement in Particle Scattering. Physical Review Letters, 98, Article ID: 080406. http://dx.doi.org/10.1103/PhysRevLett.98.080406
Jeknic-Dugic, J. and Dugic, M. (2008) Multiple System-Decomposition Method for Avoiding Quantum Decoherence. Chinese Physics Letters, 25, 371-374. http://dx.doi.org/10.1088/0256-307X/25/2/006
Jeknic-Dugic, J., Dugic, M. and Francom, A. (2014) Quantum Structures of a Model-Universe: An Inconsistency with Everett Interpretation of Quantum Mechanics. International Journal of Theoretical Physics, 53, 169-180. http://dx.doi.org/10.1007/s10773-013-1794-x
Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O. and Zeh, H.D. (1996) Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin. http://dx.doi.org/10.1007/978-3-662-03263-3
Zurek, W.H. (2003) Decoherence, Einselection, and the Quantum Origins of the Classical. Reviews of Modern Physics, 75, 715-775. http://dx.doi.org/10.1103/RevModPhys.75.715
Fraser, G. (Ed.) (2006) The New Physics for the Twenty-First Century. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9781139644228
Tommasini, P., Timmermans, E. and Piza, A.F.R.D. (1998) The Hydrogen Atom as an Entangled Electron-Proton System. American Journal of Physics, 66, 881-885. http://dx.doi.org/10.1119/1.18977
Maeda, H., Norum, D.V.L. and Gallagher, T. F. (2005) Microwave Manipulation of an Atomic Electron in a Classical Orbit. Science, 307, 1757-1760. http://dx.doi.org/10.1126/science.1108470
Rau, A.V., Dunningham, J.A. and Burnett, K. (2002) Measurement-Induced Relative-Position Localization through Entanglement. Science, 301, 1081-1084. http://dx.doi.org/10.1126/science.1084867
Graham, R. and Miyazaki, M. (1996) Dynamical Localization of Atomic de Broglie Waves: The Influence of Spontaneous Emission. Physical Review A, 53, 2683-2693. http://dx.doi.org/10.1103/PhysRevA.53.2683
Zhu, Z., Yu, H. and Lu, S. (2006) Spontaneous Excitation of an Accelerated Hydrogen Atom Coupled with Electromagnetic Vacuum Fluctuations. Physical Review D, 73 Article ID: 107501. http://dx.doi.org/10.1103/PhysRevD.73.107501