全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Expression of a Finger Millet Transcription Factor, EcNAC1, in Tobacco Confers Abiotic Stress-Tolerance

DOI: 10.1371/journal.pone.0040397

Full-Text   Cite this paper   Add to My Lib

Abstract:

NAC (NAM, ATAF1-2, and CUC2) proteins constitute one of the largest families of plant-specific transcription factors and have been shown to be involved in diverse plant processes including plant growth, development, and stress-tolerance. In this study, a stress-responsive NAC gene, EcNAC1, was isolated from the subtracted stress cDNA library generated from a drought adapted crop, finger millet, and characterized for its role in stress-tolerance. The expression analysis showed that EcNAC1 was highly induced during water-deficit and salt stress. EcNAC1 shares high amino acid similarity with rice genes that have been phylogenetically classified into stress-related NAC genes. Our results demonstrated that tobacco transgenic plants expressing EcNAC1 exhibit tolerance to various abiotic stresses like simulated osmotic stress, by polyethylene glycol (PEG) and mannitol, and salinity stress. The transgenic plants also showed enhanced tolerance to methyl-viologen (MV) induced oxidative stress. Reduced levels of reactive oxygen species (ROS) and ROS-induced damage were noticed in pot grown transgenic lines under water-deficit and natural high light conditions. Root growth under stress and recovery growth after stress alleviation was more in transgenic plants. Many stress-responsive genes were found to be up-regulated in transgenic lines expressing EcNAC1. Our results suggest that EcNAC1 overexpression confers tolerance against abiotic stress in susceptible species, tobacco.

References

[1]  Bray EA (1993) Molecular responses to water-deficit. Plant Physiol 103: 1035–1040.
[2]  Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Physiol Plant Mol Biol 50: 571–599.
[3]  Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6: 410–417.
[4]  Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41: 577–585.
[5]  Singh K, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5: 430–436.
[6]  Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251–264.
[7]  Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, et al. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391–1406.
[8]  Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17: 287–291.
[9]  Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16: 123–32.
[10]  Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57: 781–803.
[11]  Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, et al. (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10: 239–247.
[12]  Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280: 547–563.
[13]  Xiong Y, Liu T, Tian C, Sun S, Li J, et al. (2005) Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol 59: 191–203.
[14]  Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) DNA-binding specificity and molecular functions of NAC transcription factor. Plant Sci 169: 785–797.
[15]  Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, et al. (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA dependent stress-signaling pathway. Plant J 39: 863–876.
[16]  Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, et al. (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol 53: 383–397.
[17]  Hu H, Dai M, Yao J, Xiao B, Li X, et al. (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 35: 12987–12992.
[18]  Hu H, You J, Fang Y, Zhu X, Qi Z, et al. (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67: 169–181.
[19]  Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, et al. (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229: 1065–1075.
[20]  Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, et al. (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153: 185–197.
[21]  Wu Y, Deng Z, Lai J, Zhang Y, Yang C, et al. (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19: 1279–1290.
[22]  Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, et al. (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51: 617–630.
[23]  Fujita M, Mizukado S, Fujita Y, Ichikawa T, Nakazawa M, et al. (2007) Identification of stress-tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system. Biochem Biophys Res Commun 364: 250–257.
[24]  Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, et al. (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high salt and cold-responsive gene expression. Plant J 33: 751–763.
[25]  Bartels D, Salamini F (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127: 1346–1353.
[26]  Whittaker A, Adriana B, Jill F (2001) Changes in leaf hexokinase activity and metabolite levels in response to drying in the desiccation tolerant species, Sporobolus stapfianus and Xerophyta viscosa. J Exp Bot 52(358): 961–969.
[27]  Mundree, Sagadevan G, Bienyameen B, Shaheen M, Shaun P, et al. (2002) Physiological and molecular insights into drought tolerance. Afr J Biotechnol 1(2): 28–38.
[28]  Amtmann A, Bohnert HJ, Bressan RA (2005) Abiotic stress and plant genome evolution. Search for new models. Plant Physiol 138: 127–130.
[29]  Vera-Estrella R, Barkla BJ, Garcia-Ramirez L, Pantoja O (2005) Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol 139: 1507–1517.
[30]  Cosio C, Martinoia E, Keller C (2004) Hyper accumulation of cadmium and Zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134: 1–10.
[31]  Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, et al. (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130: 1–12.
[32]  Gopalakrishna R, Ganeshkumar, Krishnaprasad BT, Mathew MK, Udayakumar M (2001) A stress-responsive gene from groundnut, Gdi15, is homologous to flavonol 3-O-glucosyl transferase involved in anthocyanin biosynthesis. Biochem Biophys Res Commun 284: 574–579.
[33]  Govind G, Harshavardhan V, Patricia JK, Dhanalakshmi R, Senthil Kumar M, et al. (2009) Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Mol Genet Genomics 281(6): 591–605.
[34]  Waditte R, Hibino T, Nakomura T, Incharoensakdi A, Takabe T (2002) Overexpression of Na+/H+ antiporter confers salt tolerance on fresh water Cyanobacterium, making it capable of growth in sea water. Proc Natl Acad Sci USA 99(6): 4109–4114.
[35]  Majee M, Maitra S, Dastidar KG, Pattnaik S, Chatterjee A, et al. (2004) A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J Biol Chem 279(27): 28539–52.
[36]  Uma S, Prasad TG, Udayakumar M (1995) Genetic variability in recovery growth and synthesis of stress proteins in Response to polyethylene glycol and salt stress in finger millet. Ann Bot 76 (1): 43–49.
[37]  Impa SM, Nadaradjan S, Boominathan P, Shashidhara G, Bindumadhava H, et al. (2005) Carbon isotope discrimination accurately reflects variability in WUE measured at a whole plant level in rice (Oryza sativa L.). Crop Sci 45: 2517–2522.
[38]  Kathuria H, Giri J, Nataraja KN, Murata N, Udayakumar M, et al. (2009) Glycinebetaine induced water-stress-tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Plant Biotechnol J 7: 512–526.
[39]  Datta K, Schimidt A, Marcus A (1989) Characterization of two soybean repetitive proline rich proteins and a cognate cDNA from germinated axes. Plant Cell 1: 945–952.
[40]  Mishra RN, Ramesha A, Kaul T, Nair S, Sopory SK, et al. (2005) A modified cDNA subtraction to identify full-length differentially expressed genes from any given system: an alternate to DNA chip technology. Ann Biochem 345: 149–157.
[41]  Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31: 3497–3500.
[42]  Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2: 28–36.
[43]  Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, et al. (2005) InterPro, progress and status in 2005. Nucleic Acids Res 33: D201–D205.
[44]  Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897–911.
[45]  La Cour T, Kiemer L, M?lgaard A, Gupta R, Skriver K, et al. (2004) Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 17: 527–536.
[46]  Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) “pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation” Plant Mol Biol 42: 819–832.
[47]  Horsch RB, Fry JE, Hoffmann N, Eichholtz D, Rogers SG, et al. (1985) A simple and general method for transferring genes into plants. Science 227: 1229–1231.
[48]  Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497.
[49]  Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9): e36.
[50]  Sutherland MW, Learmonth BA (1997) The tetrazolium dyes MST and XTT provide new quantitative assays for superoxide and superoxide dismutase. Free Rad Res 27: 283–289.
[51]  Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125: 1591–1602.
[52]  Halliwell B, Grootveld M, Gutteridge JMC (1988) Methods for the measurement of hydroxyl radicals in biochemical systems: deoxyribose degradation and aromatic hydroxylation. Methods Biochem Anal 33: 59–90.
[53]  Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125: 189–198.
[54]  Ganguly M, Roychoudhury A, Sarkar SN, Sengupta DN, Datta SK, et al. (2011) Inducibility of three salinity/abscisic acid-regulated promoters in transgenic rice with gusA reporter gene. Plant Cell Rep 30(9): 1617–1625.
[55]  Vroemen CW, Mordhorst AP, Albrecht C, Kwaaitaal MACJ, de Vries SC (2003) The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15: 1563–1577.
[56]  Weir I, Lu J, Cook H, Causier B, Schwarz-Sommer Z, et al. (2004) CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development 131: 915–922.
[57]  Collinge M, Boller T (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol 46: 521–529.
[58]  Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, et al. (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress-tolerance in rice. Mol Genet Genomics 284: 173–183.
[59]  Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2011) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta. In press.
[60]  Sengupta S, Patra B, Ray R, Majumder AL (2008) Inositol methyl transferase from a wild halophytic rice, Porteresia coarctata Roxb. (Tateoka):regulation of pinitol synthesis under abiotic stress. Plant Cell and Environ 31: 1442–1459.
[61]  Nogueira FTS, Schlogl PS, Camargo SR, Fernandez JH, De Rosa Jr VE, et al. (2005) SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Sci 169: 93–106.
[62]  Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, et al. (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16: 2481–2498.
[63]  Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, et al. (2002) DNA-binding specificity of the ERE/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold inducible gene expression. Biochem Biophys Res Commun 290: 998–1009.
[64]  Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, et al. (2002a) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129: 1086–1094.
[65]  Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, et al. (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130: 639–648.
[66]  Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought and low-temperature stress-tolerance in tobacco by gene transfer. Plant Cell Physiol 45: 346–350.
[67]  Cong L, Chai TY, Zhang YX (2008) Characterization of the novel gene BjDREB1B encoding a DRE-binding transcription factor from Brassica juncea L. Biochem Biophys Res Commun 371: 702–706.
[68]  Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, et al. (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138: 341–351.
[69]  Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, et al. (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. Plant J 31: 279–292.
[70]  He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, et al. (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44: 903–916.
[71]  Hao Y, Wei W, Song Q, Chen H, Zhang Y, et al. (2011) Soybean NAC transcription factors promote abiotic stress-tolerance and lateral root formation in transgenic plants. Plant J 68(2): 302–313.
[72]  Allen RD (1995) Dissection of oxidative stress-tolerance using transgenic plants. Plant Physiol 107: 1049–1054.
[73]  Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor MI, et al. (2011) ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Molecular Plant 4(2): 346–360.
[74]  Dezar CA, Gago GM, Gonzalez DH, Chan RL (2005) Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants. Transgenic Res 14(4): 429–40.
[75]  Miyazaki S, Koga R, Bohnert HJ, Eukuhara T (1999) Tissue- and environmental response-specific expression of 10 PP2C transcripts in Mesembryanthemum crystallinum. Mol Gen Genet 261: 307–316.
[76]  Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, et al. (2004) OXIl kinase is necessary for oxidative burst-mediated signaling in Arabidopsis. Nature 427: 858–861.
[77]  Fujiwara M, Umemura K, Kawasaki T, Shimamoto K (2006) Proteomics of Rac GTPase signaling reveals its predominant role in elicitor-induced defense response of cultured rice cells. Plant Physiol 140: 734–745.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413