全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Cysteine Peptidases, Secreted by Trichomonas gallinae, Are Involved in the Cytopathogenic Effects on a Permanent Chicken Liver Cell Culture

DOI: 10.1371/journal.pone.0037417

Full-Text   Cite this paper   Add to My Lib

Abstract:

Trichomonas gallinae, the aetiological agent of avian trichomonosis, was shown to secrete soluble factors involved in cytopathogenic effect on a permanent chicken liver (LMH) cell culture. The present study focused on the characterization of these molecules. The addition of specific peptidase inhibitors to the cell-free filtrate partially inhibited the monolayer destruction, which implied the presence of peptidases in the filtrate and their involvement in the cytopathogenic effect. One-dimensional substrate (gelatin) SDS-PAGE confirmed the proteolytic character of the filtrate by demonstrating the proteolytic activity within the molecular weight range from 38 to 110 kDa. In addition, the proteolytic activity was specifically inhibited by addition of TLCK and E-64 cysteine peptidase inhibitors implying their cysteine peptidase nature. Furthermore, variations in the intensity and the number of proteolytic bands were observed between cell-free filtrates of low and high passages of the same T. gallinae clonal culture. Two-dimensional substrate gel electrophoresis of concentrated T. gallinae cell-free filtrate identified at least six proteolytic spots. The mass spectrometric analysis of spots from 2-D gels identified the presence of at least two different Clan CA, family C1, cathepsin L-like cysteine peptidases in the cell-free filtrate of T. gallinae. In parallel, a PCR approach using degenerated primers based on the conserved amino acid sequence region of cysteine peptidases from Trichomonas vaginalis identified the coding sequences for four different Clan CA, family C1, cathepsin L-like cysteine peptidases. Finally, this is the first report analyzing molecules secreted by T. gallinae and demonstrating the ubiquity of peptidases secreted by this protozoon.

References

[1]  Garner MM, Sturtevant FC (1992) Trichomoniasis in a blue-fronted Amazon parrot. J Assoc Av Vet 6: 18–20.
[2]  Baker JR (1986) Trichomoniasis, a major cause of vomiting in budgerigars. Vet Rec 118: 447–449.
[3]  Lemahieu P, Dehondt G (1977) Trichomonisis bij kanaries. Vlaams Diergen Tijds 46: 442–443.
[4]  Murphy J (1992) Psittacine trichomoniasis. Proc Assoc Avian Vet 21–4:
[5]  Bunbury N, Jones CG, Greenwood AG, Bell DJ (2007) Trichomonas gallinae in Mauritian columbids: implications for an endangered endemic. J Wildl Dis 43: 399–407.
[6]  Krone O, Altenkamp R, Kenntner N (2005) Prevalence of Trichomonas gallinae in northern goshawks from the Berlin area of northeastern Germany. J Wildl Dis 41: 304–309.
[7]  Narcisi EM, Sevoian M, Honigberg BM (1991) Pathologic changes in pigeons infected with a virulent Trichomonas gallinae strain (Eiberg). Avian Dis 35: 55–61.
[8]  Harmon WM, Clark WA, Hawbecker AC, Stafford M (1987) Trichomonas gallinae in columbiform birds from the Galapagos Islands. J Wildl Dis 23: 492–494.
[9]  Stabler RM (1954) Trichomonas gallinae: a review. Exp Parasitol 3: 368–402.
[10]  Locke LN, James P (1962) Trichomonad Canker in the Inca Dove, Scardafella inca (Lesson). The Journal of Parasitology 48: 497.
[11]  Work TM, Hale J (1996) Causes of owl mortality in Hawaii, 1992 to 1994. J Wildl Dis 32: 266–273.
[12]  Neimanis AS, Handeland K, Isomursu M, Agren E, Mattsson R, et al. (2010) First report of epizootic trichomoniasis in wild finches (family Fringillidae) in southern Fennoscandia. Avian Dis 54: 136–141.
[13]  Robinson RA, Lawson B, Toms MP, Peck KM, Kirkwood JK, et al. (2010) Emerging Infectious Disease Leads to Rapid Population Declines of Common British Birds. PLoS one 5: e12215. doi:10.1371/journal.pone.0012215.
[14]  Forzan MJ, Vanderstichel R, Melekhovets YF, McBurney S (2010) Trichomoniasis in finches from the Canadian Maritime provinces–An emerging disease. Can Vet J 51: 391–396.
[15]  Peters M, Kilwinski J, Reckling D, Henning K (2009) Geh?ufte Todesf?lle von wild lebenden Grünfinken an Futterstellen infolge Trichomonas-gallinae-Infektionen -ein aktuelles Problem in Norddeutschland. Kleintierpraxis 54: 433–438.
[16]  Gerhold RW, Yabsley MJ, Smith AJ, Ostergaard E, Mannan W, et al. (2008) Molecular characterization of the Trichomonas gallinae morphologic complex in the United States. J Parasitol 94: 1335–1341.
[17]  Grabensteiner E, Bilic I, Kolbe T, Hess M (2010) Molecular analysis of clonal trichomonad isolates indicate the existence of heterogenic species present in different birds and within the same host. Vet Parasitol 172: 53–64.
[18]  Anderson NL, Grahn RA, Van HK, Bondurant RH (2009) Studies of trichomonad protozoa in free ranging songbirds: prevalence of Trichomonas gallinae in house finches (Carpodacus mexicanus) and corvids and a novel trichomonad in mockingbirds (Mimus polyglottos). Vet Parasitol 161: 178–186.
[19]  Levine D, Brandly A (1940) Further studies on the pathogenicity of Trichomonas gallinae for baby chicks. Poultry Science 19: 205–209.
[20]  Stabler RM (1951) Effect of Trichomonas gallinae from diseased mourning doves on clean domestic pigeons. J Parasitol 37: 473–478.
[21]  Stabler RM (1947) Trichomonas gallinae, pathogenic trichomonad of birds. J Parasitol 3: 207–213.
[22]  Honigberg BM (1961) Comparative pathogenicity of Trichomonas vaginalis and Trichomonas gallinae to mice. I. Gross pathology, quantitative evaluation of virulence, and some factors affecting pathogenicity. J Parasitol 47: 545–571.
[23]  Cooper JE, Petty SJ (1988) Trichomoniasis in free-living goshawks (Accipiter gentilis gentilis) from Great Britain. J Wildl Dis 24: 80–87.
[24]  Honigberg BM, Becker RD, Livingston MC, Mclure MT (1964) The behavior and pathogenicity of two strains of Trichomonas gallinae in cell cultures. J Protozool 11: 447–465.
[25]  Amin A, Bilic I, Berger E, Hess M (2011) Trichomonas gallinae, in comparison to Tetratrichomonas gallinarum, induces distinctive cytopathogenic effects in tissue cultures. Vet Parasitol. 10.1016/j.vetpar.2011.11.037.
[26]  Kulda J (1967) Effect of different species of trichomonads on monkey kidney cell cultures. Folia Parasitology 14: 295–310.
[27]  Pindak FF, Mora de PM, Gardner WA (1993) Contact-independent cytotoxicity of Trichomonas vaginalis. Genitourin Med 69: 35–40.
[28]  Fiori PL, Rappelli P, Addis MF, Sechi A, Cappuccinelli P (1996) Trichomonas vaginalis haemolysis: pH regulates a contact-independent mechanism based on pore-forming proteins. Microb Pathog 20: 109–118.
[29]  Sommer U, Costello CE, Hayes GR, Beach DH, Gilbert RO, et al. (2005) Identification of Trichomonas vaginalis cysteine proteases that induce apoptosis in human vaginal epithelial cells. J Biol Chem 280: 23853–23860.
[30]  Garber GE, Lemchuk-Favel LT, Bowie WR (1989) Isolation of a cell-detaching factor of Trichomonas vaginalis. J Clin Microbiol 27: 1548–1553.
[31]  Schwebke JR, Burgess D (2004) Trichomoniasis. Clin Microbiol Rev 17: 794–803.
[32]  Fiori PL, Rappelli P, Addis MF (1999) The flagellated parasite Trichomonas vaginalis: new insights into cytopathogenicity mechanisms. Microbes Infect 1: 149–156.
[33]  Lubick KJ, Burgess DE (2004) Purification and analysis of a phospholipase A2-like lytic factor of Trichomonas vaginalis. Infect Immun 72: 1284–1290.
[34]  Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120: 1–21.
[35]  Arroyo R, Alderete JF (1995) Two Trichomonas vaginalis surface proteinases bind to host epithelial cells and are related to levels of cytoadherence and cytotoxicity. Arch Med Res 26: 279–285.
[36]  Mendoza-Lopez MR, Becerril-Garcia C, Fattel-Facenda LV, vila-Gonzalez L, Ruiz-Tachiquin ME, et al. (2000) CP30, a cysteine proteinase involved in Trichomonas vaginalis cytoadherence. Infect Immun 68: 4907–4912.
[37]  Petrin D, Delgaty K, Bhatt R, Garber G (1998) Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev 11: 300–317.
[38]  Arroyo R, Alderete JF (1989) Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells. Infect Immun 57: 2991–2997.
[39]  Alvarez-Sanchez ME, vila-Gonzalez L, Becerril-Garcia C, Fattel-Facenda LV, Ortega-Lopez J, et al. (2000) A novel cysteine proteinase (CP65) of Trichomonas vaginalis involved in cytotoxicity. Microb Pathog 28: 193–202.
[40]  Garber GE, Lemchuk-Favel LT (1989) Characterization and purification of extracellular proteases of Trichomonas vaginalis. Can J Microbiol 35: 903–909.
[41]  Lehker MW, Sweeney D (1999) Trichomonad invasion of the mucous layer requires adhesins, mucinases, and motility. Sex Transm Infect 75: 231–238.
[42]  Rosset I, Tasca T, Tessele PM, De Carli GA (2002) Scanning electron microscopy in the investigation of the in vitro hemolytic activity of Trichomonas vaginalis. Parasitol Res 88: 356–359.
[43]  Alderete JF, Provenzano D, Lehker MW (1995) Iron mediates Trichomonas vaginalis resistance to complement lysis. Microb Pathog 19: 93–103.
[44]  Provenzano D, Alderete JF (1995) Analysis of human immunoglobulin-degrading cysteine proteinases of Trichomonas vaginalis. Infect Immun 63: 3388–3395.
[45]  Draper D, Donohoe W, Mortimer L, Heine RP (1998) Cysteine proteases of Trichomonas vaginalis degrade secretory leukocyte protease inhibitor. J Infect Dis 178: 815–819.
[46]  Coombs GH, North MJ (1983) An analysis of the proteinases of Trichomonas vaginalis by polyacrylamide gel electrophoresis. Parasitology 86 (Pt 1): 1–6.
[47]  Cuervo P, Cupolillo E, Britto C, Gonzalez LJ, E Silva-Filho FC, et al. (2008) Differential soluble protein expression between Trichomonas vaginalis isolates exhibiting low and high virulence phenotypes. J Proteomics 71: 109–122.
[48]  Hess M, Liebhart D, Grabensteiner E, Singh A (2008) Cloned Histomonas meleagridis passaged in vitro resulted in reduced pathogenicity and is capable of protecting turkeys from histomonosis. Vaccine 26: 4187–4193.
[49]  Lockwood BC, North MJ, Scott KI, Bremner AF, Coombs GH (1987) The use of a highly sensitive electrophoretic method to compare the proteinases of trichomonads. Mol Biochem Parasitol 24: 89–95.
[50]  North MJ, Robertson CD, Coombs GH (1990) The specificity of trichomonad cysteine proteinases analysed using fluorogenic substrates and specific inhibitors. Mol Biochem Parasitol 39: 183–193.
[51]  Hernandez-Gutierrez R, vila-Gonzalez L, Ortega-Lopez J, Cruz-Talonia F, Gomez-Gutierrez G, et al. (2004) Trichomonas vaginalis: characterization of a 39-kDa cysteine proteinase found in patient vaginal secretions. Exp Parasitol 107: 125–135.
[52]  De Jesus JB, Cuervo P, Britto C, Saboia-Vahia L, E Silva-Filho FC, et al. (2009) Cysteine peptidase expression in Trichomonas vaginalis isolates displaying high- and low-virulence phenotypes. J Proteome Res 8: 1555–1564.
[53]  Burgess DE, Knoblock KF, Daugherty T, Robertson NP (1990) Cytotoxic and hemolytic effects of Tritrichomonas foetus on mammalian cells. Infect Immun 58: 3627–3632.
[54]  Singh BN, Lucas JJ, Hayes GR, Kumar I, Beach DH, et al. (2004) Tritrichomonas foetus induces apoptotic cell death in bovine vaginal epithelial cells. Infect Immun 72: 4151–4158.
[55]  Amin A, Neubauer C, Liebhart D, Grabensteiner E, Hess M (2010) Axenization and optimization of in vitro growth of clonal cultures of Tetratrichomonas gallinarum and Trichomonas gallinae. Exp Parasitol 124: 202–208.
[56]  Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68: 850–858.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413