全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Marine Drugs  2011 

Carotenoids in Algae: Distributions, Biosyntheses and Functions

DOI: 10.3390/md9061101

Keywords: algal phylogeny, biosynthesis of carotenoids, distribution of carotenoids, function of carotenoids, pigment-protein complex

Full-Text   Cite this paper   Add to My Lib

Abstract:

For photosynthesis, phototrophic organisms necessarily synthesize not only chlorophylls but also carotenoids. Many kinds of carotenoids are found in algae and, recently, taxonomic studies of algae have been developed. In this review, the relationship between the distribution of carotenoids and the phylogeny of oxygenic phototrophs in sea and fresh water, including cyanobacteria, red algae, brown algae and green algae, is summarized. These phototrophs contain division- or class-specific carotenoids, such as fucoxanthin, peridinin and siphonaxanthin. The distribution of α-carotene and its derivatives, such as lutein, loroxanthin and siphonaxanthin, are limited to divisions of Rhodophyta (macrophytic type), Cryptophyta, Euglenophyta, Chlorarachniophyta and Chlorophyta. In addition, carotenogenesis pathways are discussed based on the chemical structures of carotenoids and known characteristics of carotenogenesis enzymes in other organisms; genes and enzymes for carotenogenesis in algae are not yet known. Most carotenoids bind to membrane-bound pigment-protein complexes, such as reaction center, light-harvesting and cytochrome b 6 f complexes. Water-soluble peridinin-chlorophyll a-protein (PCP) and orange carotenoid protein (OCP) are also established. Some functions of carotenoids in photosynthesis are also briefly summarized.

References

[1]  Britton, G; Liaaen-Jensen, S; Pfander, H. Carotenoids Handbook; Birkh?user: Basel, Switzerland, 2004.
[2]  Rowan, KS. Photosynthetic Pigments of Algae; Cambridge University Press: Cambridge, UK, 1989.
[3]  Bj?rnland, T; Liaaen-Jensen, S. Distribution patterns of carotenoids in relation to chromophyte phylogeny and systematics. In The Chromophyte Algae: Problems and Perspectives; Green, JC, Leadbeater, BSC, Diver, WI, Eds.; Clarendon Press: Oxford, UK, 1989; pp. 37–60.
[4]  Liaaen-Jensen, S. Marine carotenoids. New J Chem 1990, 14, 747–759.
[5]  Mackey, MD; Mackey, DJ; Higgins, HW; Wright, SW. CHEMTAX-a program for estimating class abundances from chemical markers: Application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 1996, 144, 265–283.
[6]  Jeffrey, SW; Vesk, M. Introduction to marine phytoplankton and their pigment signatures. In Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods; Jeffrey, SW, Mantoura, RFC, Wright, SW, Eds.; UNESCO Publishing: Paris, France, 1997; pp. 37–84.
[7]  Liaaen-Jensen, S. Carotenoids in chemosystematics. In Carotenoids: Biosynthesis and Metabolism; Britton, G, Liaaen-Jensen, S, Pfander, H, Eds.; Birkh?user: Basel, Switzerland, 1998; Volume 3, pp. 217–247.
[8]  Frommolt, R; Werner, S; Paulsen, H; Goss, R; Wilhelm, C; Zauner, S; Maier, UG; Grossman, AR; Bhattacharya, D; Lohr, M. Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol Biol Evol 2008, 25, 2653–2667.
[9]  Bertrand, M. Carotenoid biosynthesis in diatoms. Photosynth Res 2010, 106, 89–102.
[10]  Dembitsky, VM; Maoka, T. Allenic and cumulenic lipids. Prog Lipid Res 2007, 46, 328–375.
[11]  Takaichi, S; Mimuro, M. Distribution and geometric isomerism of neoxanthin in oxygenic phototrophs: 9′-cis, a sole molecular form. Plant Cell Physiol 1998, 39, 968–977.
[12]  Yoshii, Y; Takaichi, S; Maoka, T; Suda, S; Sekiguchi, H; Nakayama, T; Inouye, I. Variation of siphonaxanthin series among the genus Nephroselmis (Prasinophyceae, Chlorophyta), including a novel primary methoxy carotenoid. J Phycol 2005, 41, 827–834.
[13]  Takaichi, S; Mochimaru, M. Carotenoids and carotenogenesis in cyanobacteria: Unique ketocarotenoids and carotenoid glycosides. Cell Mol Life Sci 2007, 64, 2607–2619.
[14]  Takaichi, S.. Nippon Medical School, Kawasaki, Japan. Unpublished works, 2011.
[15]  Takaichi, S; Maoka, T; Masamoto, K. Myxoxanthophyll in Synechocystis sp. PCC 6803 is myxol 2′-dimethyl-fucoside, (3R,2′S)-myxol 2′-(2,4-di-O-methyl-α-l-fucoside), not rhamnoside. Plant Cell Physiol 2001, 42, 756–762.
[16]  Schubert, N; García-Mendoza, E. Photoinhibition in red algal species with different carotenoid profiles. J Phycol 2008, 44, 1437–1446.
[17]  Britton, G. Overview of carotenoid biosynthesis. In Carotenoids: Biosynthesis and Metabolism; Britton, G, Liaaen-Jensen, S, Pfander, H, Eds.; Birkh?user: Basel, Switzerland, 1998; Volume 3, pp. 13–147.
[18]  Lichtenthaler, HK. The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 1999, 50, 47–65.
[19]  Eisenreich, W; Bacher, A; Arigoni, D; Rohdich, F. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 2004, 61, 1401–1426.
[20]  Miziorko, HM. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 2011, 505, 131–143.
[21]  Ohto, C; Ishida, C; Nakane, H; Muramatsu, M; Nishino, T; Obata, S. A thermophilic cyanobacterium Synechococcus elongatus has three different Class I prenyltransferase genes. Plant Mol Biol 1999, 40, 307–321.
[22]  Steiger, S; Jackisch, Y; Sandmann, G. Carotenoid biosynthesis in Gloeobacter violaceus PCC4721 involves a single crtI-type phytoene desaturase instead of typical cyanobacterial enzymes. Arch Microbiol 2005, 184, 207–214.
[23]  Chamovitz, D; Misawa, N; Sandmann, G; Hirschberg, J. Molecular cloning and expression in Escherichia coli of a cyanobacterial gene coding for phytoene synthase, a carotenoid biosynthesis enzyme. FEBS Lett 1992, 296, 305–310.
[24]  Martínez-Férez, I; Fernández-González, B; Sandmann, G; Vioque, A. Cloning and expression in Escherichia coli of the gene coding for phytoene synthase from the cyanobacterium Synechocystis sp. PCC6803. Biochim. Biophys Acta 1994, 1218, 145–152.
[25]  McCarthy, SS; Kobayashi, MC; Niyogi, KK. White mutants of Chlamydomonas reinhardtii are defective in phytoene synthase. Genetics 2004, 168, 1249–1257.
[26]  Steinbrenner, J; Linden, H. Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol 2001, 125, 810–817.
[27]  Tsuchiya, T; Takaichi, S; Misawa, N; Maoka, T; Miyashita, H; Mimuro, M. The cyanobacterium Gloeobacter violaceus PCC 7421 uses bacterial-type phytoene desaturase in carotenoid biosynthesis. FEBS Lett 2005, 579, 2125–2129.
[28]  Martínez-Férez, IM; Vioque, A. Nucleotide sequence of the phytoene desaturase gene from Synechocystis sp. PCC 6803 and characterization of a new mutation which confers resistance to the herbicide norflurazon. Plant Mol Biol 1992, 18, 981–983.
[29]  Vila, M; Couso, I; León, R. Carotenoid content in mutants of the chlorophyte Chlamydomonas reinhardtii with low expression levels of phytoene desaturase. Process Biochem 2008, 43, 1147–1152.
[30]  Huang, J; Liu, J; Li, Y; Chen, F. Isolation and characterization of the phytoene desaturase gene as a potential selective marker for genetic engineering of the astaxanthin-producing green alga Chlorella zofingiensis (Chlorophyta). J Phycol 2008, 44, 684–690.
[31]  Liu, J; Zhong, Y; Sun, Z; Huang, J; Sandmann, G; Chen, F. One amino acid substitution in phytoene desaturase makes Chlorella zofingiensis resistant to norflurazon and enhances the biosynthesis of astaxanthin. Planta 2010, 232, 61–67.
[32]  Linden, H; Vioque, A; Sandmann, G. Isolation of a carotenoid biosynthesis gene coding for ζ-carotene desaturase from Anabaena PCC 7120 by heterologous complementation. FEMS Microbiol Lett 1993, 106, 99–104.
[33]  Breitenbach, J; Fernández-González, B; Vioque, A; Sandmann, G. A higher-plant type ζ-carotene desaturase in the cyanobacterium Synechocystis PCC6803. Plant Mol Biol 1998, 36, 725–732.
[34]  Masamoto, K; Wada, H; Kaneko, T; Takaichi, S. Identification of a gene required for cis-to-trans carotene isomerization in carotenogenesis of the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 2001, 42, 1398–1402.
[35]  Breitenbach, J; Vioque, A; Sandmann, G. Gene sll0033 from Synechocystis 6803 encodes a carotene isomerase involved in the biosynthesis of all-E lycopene. Z Naturforsch 2001, 56c, 915–917.
[36]  Cunningham, FX, Jr; Sun, Z; Chamovitz, D; Hirschberg, J; Gantt, E. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp. strain PCC7942. Plant Cell 1994, 6, 1107–1121.
[37]  Stickforth, P; Steiger, S; Hess, WR; Sandmann, G. A novel type of lycopene ?-cyclase in the marine cyanobacterium Prochlorococcus marinus MED4. Arch Microbiol 2003, 179, 409–415.
[38]  Cunningham, FX, Jr; Lee, H; Gantt, E. Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae. Eukaryot Cell 2007, 6, 533–545.
[39]  Ramos, A; Coesel, S; Marques, A; Rodrigues, M; Baumgartner, A; Noronha, J; Rauter, A; Brenig, B; Varela, J. Isolation and characterization of a stress-inducible Dunaliella salina Lyc-β gene encoding a functional lycopene β-cyclase. Appl Microbiol Biotechnol 2008, 79, 819–828.
[40]  Steinbrenner, J; Linden, H. Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: Regulation by photosynthetic redox control. Plant Mol Biol 2003, 52, 343–356.
[41]  Mochimaru, M; Msukawa, H; Maoka, T; Mohamed, HE; Vermaas, WFJ; Takaichi, S. Substrate specificities and availability of fucosyltransferase and β-carotene hydroxylase for myxol 2′-fucoside synthesis in Anabaena sp. strain PCC 7120 compared with Synechocystis sp. strain PCC 6803. J. Bacteriol 2008, 190, 6726–6733.
[42]  Makino, T; Harada, H; Ikenaga, H; Matsuda, S; Takaichi, S; Shindo, K; Sandmann, G; Ogata, T; Misawa, N. Characterization of cyanobacterial carotenoid ketolase CrtW and hydroxylase CrtR by complementation analysis in Escherichia coli. Plant Cell Physiol 2008, 49, 1867–1878.
[43]  Masamoto, K; Misawa, N; Kaneko, T; Kikuno, R; Toh, H. β-Carotene hydroxylase gene from the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 1998, 39, 560–564.
[44]  Lagarde, D; Vermaas, W. The zeaxanthin biosynthesis enzyme β-carotene hydroxylase is involved in myxoxanthophyll synthesis in Synechocystis sp. PCC 6803. FEBS Lett 1999, 454, 247–251.
[45]  Lagarde, D; Beuf, L; Vermaas, W. Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl. Environ Microbiol 2000, 66, 64–72.
[46]  Linden, H. Carotenoid hydroxylase from Haematococcus pluvialis: cDNA sequence, regulation and functional complementation. Biochim Biophys Acta 1999, 1446, 203–212.
[47]  Iwai, M; Maoka, T; Ikeuchi, M; Takaichi, S. 2,2′-β-Hydroxylase (CrtG) is involved in carotenogenesis of both nostoxanthin and 2-hydroxymyxol 2′-fucoside in Thermosynechococcus elongatus strain BP-1. Plant Cell Physiol 2008, 49, 1678–1687.
[48]  Baroli, I; Do, AD; Yamane, T; Niyogi, KK. Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlomydomonas reinhardtii from photooxidative stress. Plant Cell 2003, 15, 992–1008.
[49]  Goss, R. Substrate specificity of the violaxanthin de-epoxidase of the primitive green alga Mantoniella squamata (Prasinophyceae). Planta 2003, 217, 801–812.
[50]  Mochimaru, M; Msukawa, H; Takaichi, S. The cyanobacterium Anabaena sp. PCC 7120 has two distinct β-carotene ketolase: CrtO for echinenone and CrtW for ketomyxol synthesis. FEBS Lett 2005, 579, 6111–6114.
[51]  Fernández-González, B; Sandmann, G; Vioque, A. A new type of asymmetrically acting β-carotene ketolase is required for the synthesis of echinenone in the cyanobacterium Synechocystis sp PCC 6803. J Biol Chem 1997, 272, 9728–9733.
[52]  Steiger, S; Sandmann, G. Cloning of two carotenoid ketolase genes from Nostoc punctiforme for the heterologous production of canthaxanthin and astaxanthin. Biotechnol Lett 2004, 26, 813–817.
[53]  Huang, J-C; Wang, Y; Sandmann, G; Chen, F. Isolation and characterization of a carotenoid oxygenase gene from Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 2006, 71, 473–479.
[54]  Kajiwara, S; Kakizono, T; Saito, T; Kondo, K; Ohtani, T; Nishio, N; Nagai, S; Misawa, N. Isolation and functional identification of a novel cDNA from astaxanthin biosynthesis from Haematococcus pluvialis, and astaxanthin synthesis in Escherichia coli. Plant Mol Biol 1995, 29, 343–352.
[55]  Huang, J-C; Chen, F; Sandmann, G. Stress-related differential expression of multiple β-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. J Biotechnol 2006, 122, 176–185.
[56]  Lotan, T; Hirschberg, J. Cloning and expression in Escherichia coli of the gene encoding β-C-4-oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett 1995, 364, 125–128.
[57]  Sandmann, G. Carotenoid biosynthesis in microorganisms and plants. Eur J Biochem 1994, 223, 7–24.
[58]  Armstrong, GA. Genetics of eubacterial carotenoid biosynthesis: A colorful tale. Annu Rev Microbiol 1997, 51, 629–659.
[59]  Misawa, N; Nakagawa, M; Kobayashi, K; Yamano, S; Izawa, Y; Nakamura, K; Harashima, K. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 1990, 172, 6704–6712.
[60]  Schneider, C; B?ger, P; Sandmann, G. Phytoene desaturase: Heterologous expression in an active state, purification, and biochemical properties. Protein Expr Purif 1997, 10, 175–179.
[61]  Takaichi, S. Distribution and biosynthesis of carotenoids. In The Purple Phototrophic Bacteria; Hunter, CN, Daldal, F, Thurnauer, MC, Beatty, JT, Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 97–117.
[62]  Krubasik, P; Sandmann, G. Molecular evolution of lycopene cyclases involved in the formation of carotenoids with ionone end groups. Biochem Soc Trans 2000, 28, 806–810.
[63]  Maresca, JA; Graham, JE; Wu, M; Eisen, JA; Bryant, DA. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria. Proc Natl Acad Sci USA 2007, 104, 11784–11789.
[64]  Sandmann, G. Molecular evolution of carotenoid biosynthesis from bacteria to plants. Physiol Plant 2002, 116, 431–440.
[65]  Harker, M; Hirschberg, J. Molecular biology of carotenoid biosynthesis in photosynthetic organisms. Methods Enzymol 1998, 297, 244–263.
[66]  Cunningham, FX, Jr; Gantt, E. One ring or two? Determination of ring number in carotenoids by lycopene ?-cyclases. Proc Natl Acad Sci USA 2001, 98, 2905–2910.
[67]  Hemmi, H; Ikejiri, S; Nakayama, T; Nishino, T. Fusion-type lycopene β-cyclase from a thermoacidophilic archaeon Sulfolobus solfataricus. Biochem Biophys Res Commun 2003, 305, 586–591.
[68]  Maresca, JA; Frigaard, N-U; Bryant, DA. Identification of a novel class of lycopene cyclases in photosynthetic organisms. In Photosynthesis: Fundamental Aspects to Global Perspectives; van der Est, A, Bruce, D, Eds.; Allen Press: Lawrence, KS, USA, 2005; pp. 884–886.
[69]  Swift, IE; Milborrow, BV; Jeffrey, SW. Formation of neoxanthin, diadinoxanthin and peridinin from [14C]zeaxanthin by a cell-free system from Amphidinium carterae. Phytochemistry 1982, 21, 2859–2864.
[70]  Swift, IE; Milborrow, BV. Stereochemistry of allene biosynthesis and the formation of the acetylenic carotenoid diadinoxanthin and peridinin (C37) from neoxanthin. Biochem J 1981, 199, 69–74.
[71]  Lemoine, Y; Schoefs, B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: A multifunctional response to stress. Photosynth Res 2010, 106, 155–177.
[72]  Kim, J; Smith, JJ; Tian, L; DellaPenna, D. The evolution and function of carotenoid hydroxylases in Arabidopsis. Plant Cell Physiol 2009, 50, 463–479.
[73]  Durnford, DG. Structure and regulation of algal light-harvesting complex genes. In Photosynthesis in Algae; Larkum, AWD, Douglas, SE, Raven, JA, Eds.; Kluwer: Dordrecht, The Netherlands, 2003; pp. 63–82.
[74]  Macpherson, AN; Hiller, RG. Light-harvesting systems in chlorophyll c-containing algae. In Light-Harvesting Antennas in Photosynthesis; Green, BR, Parson, WW, Eds.; Kluwer: Dordrecht, The Netherlands, 2003; pp. 323–352.
[75]  Neilson, JAD; Durnford, DG. Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynth Res 2010, 106, 57–71.
[76]  Kana, TM; Glibert, PM; Goericke, R; Welschmeyer, NA. Zeaxanthin and β-carotene in Synechococcus WH7803 respond differently to irradiance. Limnol Oceanogr 1998, 33, 1623–1627.
[77]  Masamoto, K; Zsiros, O; Gombos, Z. Accumulation of zeaxanthin in cytoplasmic membranes of the cyanobacteirum Synechococcus sp. Strain PCC 7942 grown under high light condition. J Plant Physiol 1999, 155, 136–138.
[78]  Kurisu, G; Zhang, H; Smith, JL; Cramer, WA. Structure of the cytochrome b6f complex of oxygenic photosynthesis: Tuning the cavity. Science 2003, 302, 1009–1014.
[79]  Stroebel, D; Choquet, Y; Popot, J-L; Picot, D. An atypical haem in the cytochrome b6f complex. Nature 2003, 426, 413–418.
[80]  Boronowsky, U; Wenk, S-O; Schneider, D; J?ger, C; R?gner, M. Isolation of membrane protein subunits in their native state: Evidence for selective binding of chlorophyll and carotenoid to the b6 subunit of the cytochrome b6f complex. Biochim Biophys Acta 2001, 1506, 55–66.
[81]  Hofmann, E; Wrench, PM; Sharples, FP; Hiller, RG; Welte, W; Diederichs, K. Structural basis of light harvesting by carotenoids: Peridinin-chlorophyll-protein from Amphidinium carterae. Science 1996, 272, 1788–1791.
[82]  Kerfeld, CA; Sawaya, MR; Brahmandam, V; Cascio, D; Ho, KK; Trevithick-Sutton, CC; Krogmann, DW; Yeates, TO. The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure 2003, 11, 55–65.
[83]  Wilson, A; Ajlani, G; Verbavatz, J-M; Vass, I; Kerfeld, CA; Kirilovsky, D. A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 2006, 18, 992–1007.
[84]  Englert, G; Bj?rnland, T; Liaaen-Jensen, S. 1D and 2D NMR study of some allenic carotenoids of the fucoxanthin series. Magn Reson Chem 1990, 28, 519–528.
[85]  Egeland, ES; Guillard, RRL; Liaaen-Jensen, S. Additional carotenoid prototype representatives and a general chemosystematic evaluation of carotenoids in Prasinophyceae (Chlorophyta). Phytochemistry 1997, 44, 1087–1097.
[86]  Yoshii, Y; Takaichi, S; Maoka, T; Hanada, S; Inouye, I. Characterization of two unique carotenoid fatty acid esters from Pterosperma cristatum (Prasinophyceae, Chlorophyta). J Phycol 2002, 38, 297–303.
[87]  Egeland, ES; Liaaen-Jensen, S. Ten minor carotenoids from Prasinophyceae (Chlorophyta). Phytochemistry 1995, 40, 515–520.
[88]  Mimuro, M; Nagashima, U; Takaichi, S; Nishimura, Y; Yamazaki, I; Katoh, T. Molecular structure and optical properties of carotenoids for the in vivo energy transfer function in the algal photosynthetic pigment system. Biochim Biphys Acta 1992, 1098, 271–274.
[89]  Akimoto, S; Yokono, M; Higuchi, M; Tomo, T; Takaichi, S; Murakami, A; Mimuro, M. Solvent effects on excitation relaxation dynamics of a keto-carotenoid, siphonaxanthin. Photochem Photobiol Sci 2008, 7, 1206–1209.
[90]  Yamamoto, HY; Bugos, RC; Hieber, AD. Biochemistry and molecular biology of the xanthophyll cycle. In The Phytochemistry of Carotenoids; Frank, HA, Young, AJ, Britton, G, Cogdell, RJ, Eds.; Kluwer: Dordrecht, The Netherlands, 1999; pp. 293–303.
[91]  Goss, R; Jakob, T. Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res 2010, 106, 103–122.
[92]  Grouneva, I; Jakob, T; Wilhelm, C; Goss, R. Influence of ascorbate and pH on the activity of the diatom xanthophyll cycle-enzyme diadinoxanthin de-epoxidase. Physiol Plant 2006, 126, 205–211.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133