全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Flux Measurements in Cairo. Part 2: On the Determination of the Spatial Radiation and Energy Balance Using ASTER Satellite Data

DOI: 10.3390/rs4092635

Keywords: energy balance, radiation fluxes, turbulent heat fluxes, remote sensing

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study highlights the possibilities and constraints of determining instantaneous spatial surface radiation and land heat fluxes from satellite images in a heterogeneous urban area and its agricultural and natural surroundings. Net radiation was determined using ASTER satellite data and MODTRAN radiative transfer calculations. The soil heat flux was estimated with two empirical methods using radiative terms and vegetation indices. The turbulent heat fluxes finally were determined with the LUMPS (Local-Scale Urban Meteorological Parameterization Scheme) and the ARM (Aerodynamic Resistance Method) method. Results were compared to in situ measured ground data. The performance of the atmospheric correction was found to be crucial for the estimation of the radiation balance and thereafter the heat fluxes. The soil heat flux could be modeled satisfactorily by both of the applied approaches. The LUMPS method, for the turbulent fluxes, appeals by its simplicity. However, a correct spatial estimation of associated parameters could not always be achieved. The ARM method showed the better spatial results for the turbulent heat fluxes. In comparison with the in situ measurements however, the LUMPS approach rendered the better results than the ARM?method.

References

[1]  Raga, G.B.; Castro, T.; Baumgardner, D. The impact of megacity pollution on local climate and implications for the regional environment: Mexico City. Atmos. Environ 2001, 35, 1805–1811.
[2]  Tran, H.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asia mega cities. Int. J. Appl. Earth Obs. Geoinf 2006, 8, 34–48.
[3]  Choudhury, B.J.; Idso, S.B.; Reginato, R.J. Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation. Agr. For. Meteorol 1987, 39, 283–297.
[4]  Kustas, W.P.; Choudhury, B.J.; Moran, M.S.; Reginato, R.J.; Jackson, R.D.; Gay, L.W.; Weaver, H.L. Determination of sensible heat flux over sparse canopy using thermal infrared data. Agr. For. Meteorol 1989, 44, 197–216.
[5]  Kustas, W.P.; Daughtry, C.S.T. Estimation of the soil heat flux/net radiation ratio from spectral data. Agr. For. Meteorol 1990, 49, 205–223.
[6]  Zhan, X.; Kustas, W.P.; Humes, K.S. An intercomparison study on models of sensible heat flux over partial canopy surfaces with remotely sensed surface temperatures. Remote Sens. Environ 1996, 58, 242–256.
[7]  Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol 1998, 212–213, 198–212.
[8]  Roerink, G.J.; Su, Z.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys. Chem. Earth Part B 2000, 25, 147–157.
[9]  Voogt, J.A.; Grimmond, C.S.B. Modelling surface sensible heat flux using surface radiative temperatures in a simple urban area. J. Appl. Meteorol 2000, 39, 1679–1699.
[10]  Su, Z. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci 2002, 6, 85–99.
[11]  Ma, W.; Ma, Y.; Li, M.; Hu, Z.; Zhong, L.; Su, Z.; Ishikawa, H.; Wang, J. Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery. Hydrol. Earth Syst. Sci 2009, 13, 57–67.
[12]  Mito, C.O.; Boiyo, R.K.; Laneve, G. A simple algorithm to estimate sensible heat flux from remotely sensed MODIS data. Int. J. Remote Sens 2012, 33, 6109–6121.
[13]  Frey, C.M.; Parlow, E.; Vogt, R.; Abdel Wahab, M.; Harhash, M. Flux measurements in Cairo. Part 1: In situ measurements and their applicability for comparison with satellite data. Int. J. Climatol 2011, 31, 218–231.
[14]  Verma, S.B. Aerodynamic Resistances to Transfers of Heat, Mass and Momentum. In Estimation of Areal Evapotranspiration; Black, T.A., Spittlehouse, D.L., Novak, M.D., Price, D.T., Eds.;. IAHS Pub. No. 177 IAHS: Washington, DC, USA, 1989; pp. 13–20.
[15]  Grimmond, C.S.B.; Oke, T.R. Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteorol 1999, 38, 1262–1292.
[16]  Frey, C.M.; Parlow, E. Determination of the aerodynamic resistance to heat using morphometric methods. EARSeL eProc 2010, 9, 52–63.
[17]  Offerle, B.D. The Energy Balance of an Urban Area: Examining Temporal and Spatial Variability through Measurements, Remote Sensing and ModellingPh.D. Thesis. Indiana University, Bloomington, IN, USA, 2003.
[18]  Xu, W.; Wooster, M.J.; Grimmond, C.S.B. Modelling of urban sensible heat flux at multiple spatial scales: A demonstration using airborne hyperspectral imagery of Shanghai and a temperature-emissivity separation approach. Remote Sens. Environ 2008, 112, 3493–3510.
[19]  Grimmond, C.S.B.; Oke, T.R. Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS). J. Appl. Meteorol 2002, 41, 792–810.
[20]  de Bruin, H.A.R.; Holtslag, A.A.M. A simple parameterization of surface fluxes of sensible and latent heat during daytime compared with the Penman–Monteith concept. J. Appl. Meteorol 1982, 21, 1610–1621.
[21]  Holtslag, A.A.M.; van Ulden, A.P. A simple scheme for daytime estimates of the surface fluxes from routine weather data. J. Appl. Meteorol 1983, 22, 517–529.
[22]  Rigo, G. Satellite Analysis of Radiation and Heat Fluxes during the Basel Urban Boundary Layer Experiment (BUBBLE)Ph.D. Thesis. University of Basel, Basel, Switzerland, 2007.
[23]  Middel, A.; Brazel, A.J.; Kaplan, S.; Myint, S.W. Daytime cooling efficiency and diurnal energy balance in Phoenix, Arizona, USA. Climate Res 2012, 54, 21–34.
[24]  Menenti, M.; Choudhury, B.J. Parameterization of Land Surface Evaporation Using a Location Dependent Potential Evaporation and Surface Temperature Range. In Exchange Processes at the Land Surface for a Range of Space and Time Scales; Bolle, H.J., Feddes, R.A., Kalma, J.D., Eds.; IAHS Publication: Washington, DC, USA, 1993; pp. 561–568.
[25]  Zahira, S.A.H.; Mederbal, K.; Frederic, D. Mapping latent heat flux in the western forest covered regions of Algeria using remote sensing data and a spatialized model. Remote Sens 2009, 1, 795–817.
[26]  Gowda, P.H.; Chávez, J.L.; Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Tolk, J.A. Remote sensing based energy balance algorithms for mapping ET: Current status and future challenges. Trans. ASABE 2007, 50, 1639–1644.
[27]  Schlink, U.; Rehwagen, M.; Richter, M.; Herbarth, O. Environmental Security in Urban Areas. Health-Relevant VOC Exposure in the Greater Cairo Area, Egypt. In Managing Critical Infrastructure Risks: Decision Tools and Applications for Port Security; Linkov, I., Wenning, R.J., Kiker, G.A., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 423–434.
[28]  Martonchik, J.V.; Diner, D.J.; Kahn, R.A.; Ackerman, T.P.; Verstraete, M.M.; Pinty, B.; Gordon, H.R. Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging. IEEE Trans. Geosci. Remote Sens 1998, 36, 1212–1227.
[29]  Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemanns, R.; Dolman, H.; Field, C.; et al. Energy balance closure at FLUXNET sites. Agr. For. Meteorol 2002, 113, 223–243.
[30]  Foken, T. The energy balance closure problem: An overview. Ecol. Appl 2008, 18, 1351–1367.
[31]  Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.; Wesely, M.L. Correcting eddy-covariance flux underestimates over a grassland. Agr. For. Meteol 2000, 103, 279–300.
[32]  Liang, S. Quantitative Remote Sensing of Land Surfaces; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2005.
[33]  Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover and leaf area index. Remote Sens. Environ 1997, 62, 241–252.
[34]  Frey, C.M.; Parlow, E. Geometry effect on the estimation of band reflectance in an urban area. Theor. Appl. Climatol 2009, 96, 395–406.
[35]  Monteith, J.L.; Unsworth, M.H. Principles of Environmental Physics; Sevenoaks: London, UK, 1990.
[36]  Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperatures. Agr. For. Meteorol 1995, 77, 263–293.
[37]  Sobrino, J.A.; Gómes, M.; Jiménez-Mu?oz, J.C.; Olioso, A.; Chehbouni, G. A simple algorithm to estimate evapotranspiration from DAIS data: Application to the DAISEX campaigns. J. Hydrol 2005, 315, 117–125.
[38]  Rigo, G.; Parlow, E. Modelling the ground heatflux of an urban area with remote sensing data. Theor. Appl. Climatol 2006, 90, 185–199.
[39]  Prigent, C.; Tegen, I.; Aires, F.; Marticorena, B.; Zribi, M. Estimation of the aerodynamic roughness length in arid and semi-arid regions over the globe with the ERS scatterometer. J. Geophys. Res 2005, 110, 1–12.
[40]  Greeley, R.; Blumberg, D.G.; McHone, J.F.; Dobrovolskis, A.; Iversen, J.D.; Lancaster, N.; Rasmussen, K.R.; Wall, S.D.; White, B.R. Applications of spaceborne radar laboratory data to the study of aeolian processes. J. Geophys. Res 1997, 102, 971–983.
[41]  Blumberg, R.; Greeley, D.G. Field studies of aerodynamic roughness length. J. Arid Environ 1993, 25, 39–48.
[42]  van Ulden, A.P. Simple estimates for vertical diffusion from sources near the ground. Atmos. Environ 1978, 12, 2125–2129.
[43]  Pasquill, F.; Smith, F.B. Atmospheric Diffusion; Wiley: New York, NY, USA, 1983.
[44]  Kormann, R.; Meixner, F.X. An analytic footprint model for neutral stratification. Bound.-Lay. Meteorol 2001, 99, 207–224.
[45]  Hsieh, C.I.; Katul, G.; Chi, T. An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv. Water Resour 2000, 23, 765–772.
[46]  Li, F.; Kustas, W.P.; Anderson, M.C.; Prueger, J.H.; Scott, R.L. Effect of remote sensing spatial resolution on interpreting tower-based flux observations. Remote Sens. Environ 2008, 112, 337–349.
[47]  Chen, B.; Black, T.A.; Coops, N.C.; Hilker, T.; Trofymow, J.A.T.; Morgenstern, K. Assessing tower flux footprint climatology and scaling between remotely sensed and eddy covariance measurements. Bound.-Lay. Meteorol 2009, 130, 137–167.
[48]  Ronglin, T.; Zhao-Liang, L.; Yuanyuan, J.; Chuanrong, L.; Xiaomin, S.; William, P.K.; Martha, C.A. An intercomparison of three remotesensing-based energy balance models using Large Aperture Scintillometer measurements over a wheat–corn production region. Remote Sens. Environ 2011, 115, 3187–3202.
[49]  García, M.; Villagarcía, L.; Contreras, S.; Domingo, F.; Puigdefábregas, J. Comparison of three operative models for estimating the surface water deficit using ASTER reflective and thermal data. Sensors 2007, 7, 860–883.
[50]  Kustas, W.P.; Norman, J.M. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agr. For. Meteorol 1999, 94, 13–29.
[51]  Moderow, U.; Aubinet, M.; Feigenwinter, C.; Kolle, O.; Lindroth, A.; M?lder, M.; Montagnani, L.; Rebmann, C.; Bernhofer, C. Available energy and energy balance closure at four coniferous forest sites across Europe. Theor. Appl. Climatol 2009, 98, 397–412.
[52]  Chang, T.-Y.; Liou, Y.-A.; Lin, C.-Y.; Liu, S.-C.; Wang, Y.-C. Evaluation of surface heat fluxes in Chiayi plain of Taiwan by remotely sensed data. Int. J. Remote Sens 2010, 31, 3885–3898.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133