全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use

DOI: 10.3390/rs4061671

Keywords: Unmanned Aircraft System (UAS), UAV, drone, aerial survey

Full-Text   Cite this paper   Add to My Lib

Abstract:

Unmanned Aircraft Systems (UAS) have evolved rapidly over the past decade driven primarily by military uses, and have begun finding application among civilian users for earth sensing reconnaissance and scientific data collection purposes. Among UAS, promising characteristics are long flight duration, improved mission safety, flight repeatability due to improving autopilots, and reduced operational costs when compared to manned aircraft. The potential advantages of an unmanned platform, however, depend on many factors, such as aircraft, sensor types, mission objectives, and the current UAS regulatory requirements for operations of the particular platform. The regulations concerning UAS operation are still in the early development stages and currently present significant barriers to entry for scientific users. In this article we describe a variety of platforms, as well as sensor capabilities, and identify advantages of each as relevant to the demands of users in the scientific research sector. We also briefly discuss the current state of regulations affecting UAS operations, with the purpose of informing the scientific community about this developing technology whose potential for revolutionizing natural science observations is similar to those transformations that GIS and GPS brought to the community two decades ago.

References

[1]  Watts, A.C.; Kobziar, L.N.; Percival, H.F. Unmanned Aircraft Systems for Wildland Fire Monitoring and Research. Proceedings of the 24th Tall Timbers Fire Ecology Conference: The Future of Fire: Public Awareness, Health, and Safety, Tallahassee, FL, USA, 11–15 January 2009; pp. 86–90.
[2]  Haydon, F.S. Aeronautics in the Union and Confederate Armies, With a Survey of Military Aeronautics Prior to 1861. In Military Ballooning During the Early Civil War; Johns Hopkins University Press: Baltimore, MD, USA, 2000; Volume 1.
[3]  Bowen, D. Encyclopedia of War Machines: An Historical Survey of the World’s Great Weapons; Peerage Books: London, UK, 1977.
[4]  Encyclopedia of Nineteenth-Century Photography; Hannavy, J., Ed.; Taylor & Francis Group: Routledge, 2007; Volume 1, pp. 14–15.
[5]  Nyquist, J.E. Unmanned aerial vehicles that even geoscience departments can afford. Geotimes 1997, 42, 20–23.
[6]  Quilter, M.C.; Anderson, V.J. A proposed method for determining shrub utilization using LA/LS imagery. J. Range Manage 2001, 54, 378–381, doi:10.2307/4003106.
[7]  Polski, P. DHS View of Unmanned Aerial Vehicle Needs. Proceedings of AIAA 3rd Unmanned Unlimited Technical Conference, Chical, IL, USA, 20–23 September 2004.
[8]  Kaestner, R.; Thrun, S.; Montemerlo, M.; Whalley, M. A Non-Rigid Approach to Scan Alignment and Change Detection Using Range Sensor Data. In Field and Service Robotics: Results of the 5th International Conference STAR 25; Cooke, P.I., Sukkarieh, S., Eds.; Springer-Verlaag: Berlin, Germany, 2006; pp. 179–194.
[9]  Watts, A.C.; Perry, J.H.; Smith, S.E.; Burgess, M.A.; Wilkinson, B.E.; Szantoi, Z.; Ifju, P.G.; Percival, H.F. Small unmanned aircraft systems for low-altitude aerial surveys. J. Wildl. Manage 2010, 7, 1614–1619.
[10]  Merlin, P. Ikhana Unmanned Aircraft System: Western States Fire Missions. In NASA Monographs in Aerospace History #44 SP-2009-4544; NASA: Washington, DC, USA, 2009; pp. 1–70.
[11]  Ambrosia, V.G.; Wegener, S.; Zajkowski, T.; Sullivan, D.V.; Buechel, S.; Enomoto, F.; Hinkley, E.A.; Lobitz, B.; Schoenung, S. The Ikhana UAS western states fire imaging missions: From concept to reality (2006–2010). Geocarto Int 2011, 26, 85–101, doi:10.1080/10106049.2010.539302.
[12]  Ambrosia, V.G.; Wegener, S.S.; Sullivan, D.V.; Buechel, S.W.; Dunagan, S.E.; Brass, J.A.; Stoneburner, J.; Schoenung, S.M. Demonstrating UAV-acquired real-time thermal data over fires. Photogramm. Eng. Remote Sensing 2003, 69, 391–402.
[13]  Blakeslee, R.J.; Croskey, C.L.; Desch, M.D.; Farrell, W.M.; Goldberg, R.A.; Houser, J.G.; Kim, H.S.; Mach, D.M.; Mitchell, J.D.; Stoneburner, J.C. The Altus Cumulus Electrification Study (ACES): A UAV-Based Science Demonstration. Proceedings of International Conference on Atmospheric Electricity, Versailles, France, 9–13 June 2003; p. 1.
[14]  Perry, J.H.; Mohamed, A.; El-Rahman, A.H.; Bowman, W.S.; Kaddoura, Y.O.; Watts, A.C. Precision Directly Georeferenced Unmanned Aerial Remote Sensing System: Performance Evaluation. Proceedings of the Institute of Navigation National Technical Meeting, San Diego, CA, USA, 28–30 January 2008; pp. 680–688.
[15]  Wilkinson, B.E.; Dewitt, B.A.; Watts, A.C.; Mohamed, A.H.; Burgess, M.A. A new approach for passpoint generation from aerial video imagery. Photogramm. Eng. Remote Sensing 2009, 75, 1415–1424.
[16]  Federal Aviation Administration. Unmanned Aircraft Operations in the National Airspace System; Federal Register: Washington, DC, USA, 2007; Volume 72, pp. 6689–6690.
[17]  Federal Aviation Administration. Factsheet: Unmanned Aircraft Systems, Available online: http://www.faa.gov/about/initiatives/uas/ (accessed on 15 February 2012).
[18]  Federal Aviation Administration. Unmanned Aircraft Operations in the National Airspace System (NAS). Federal Aviation Administration Air Traffic Organization Policy Notice N JO 7210.766; US Dept. of Transportation: Washington, DC, USA, 2011; pp. 1–12.
[19]  Carey, B. Small UAS rule will begin phased entry of unmanned aircraft. Aviation International News Online, 4 October 2011. Available online: http://www.ainonline.com/?q=aviation-news/aviation-international-news/2011-10-04/small-uas-rule-will-begin-phased-entry-unmanned-aircraft (accessed on 23 October 2011).
[20]  Grady, M. Coming soon: Era of UAS? AVflash News, 15 February 2012. Available online: http://www.avweb.com/avwebflash/news/ComingSoonEraOfUAS_206186-1.html (accessed on 15 February 2012).
[21]  Department of State. The International Traffic in Arms Regulations (ITAR); US Department of State, Directorate of Defense Trade Controls: Washington, DC, USA. Available online: http://www.pmddtc.state.gov/regulations_laws/itar.html (accessed on 15 February 2012).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133