|
Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of Central Eastern ChinaDOI: 10.5194/acpd-13-10809-2013 Abstract: In order to understand the aging and processing of organic aerosols (OA), an intensive field campaign (Campaign of Air Pollution at Typical Coastal Areas In Eastern China, CAPTAIN) was conducted in March–April at a receptor site (Changdao Island) in Central Eastern China. Multiple fast aerosol and gas measurement instruments were used during the campaign, including a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was applied to measure mass concentrations and non-refractory chemical components of submicron particles (PM1nr). The average mass concentration of PM1 (PM1nr + black carbon) was 47 ± 36 μg m 3 during the campaign and showed distinct variation depending on back trajectories and their overlap with source regions. Organic aerosol (OA) is the largest component of PM1 (30%), followed by nitrate (28%), sulfate (19%), ammonium (15%), black carbon (6%), and chloride (3%). Four OA components were resolved by Positive Matrix Factorization (PMF) of the high-resolution spectra, including low-volatility oxygenated organic aerosol (LV-OOA), semi-volatile oxygenated OA (SV-OOA), hydrocarbon-like OA (HOA) and a coal combustion OA (CCOA), reported here for the first time. The mass spectrum of CCOA has high abundance of fragments from polycyclic aromatic hydrocarbons (PAHs) (m/z 128, 152, 178 etc.). The average atomic ratio of oxygen to carbon in OA (O/C) at Changdao is 0.59, which is comparable to other field studies reported at locations downwind of large pollution sources, indicating the oxidized nature of most OA during the campaign. The evolution of OA elemental composition in the Van Krevelen diagram (H/C vs. O/C) shows a slope of 0.63, however, the OA influenced by coal combution exhibits a completely different evolution that appears dominated by physical mixing. The aging of organic aerosols vs. with photochemical age was investigated. It is shown that OA/ΔCO, as well as LV-OOA/ΔCO and SV-OOA/ΔCO, positively correlated with photochemical age. LV-OOA accounted for 73% of the OA secondary formation in the oldest plumes (photochemical age of 25 h). The kOH at Changdao by assuming SOA formation and aging as a first-order process proportional to OH was calculated to be is 5.2 × 10 12 cm3 molec 1 s 1 which is similar to those determined in recent studies of polluted air in other continents.
|