全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biological Activity of Lenalidomide and Its Underlying Therapeutic Effects in Multiple Myeloma

DOI: 10.1155/2012/842945

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lenalidomide is a synthetic compound derived by modifying the chemical structure of thalidomide. It belongs to the second generation of immunomodulatory drugs (IMiDs) and possesses pleiotropic properties. Even if lenalidomide has been shown to be active in the treatment of several hematologic malignancies, this review article is mostly focalized on its mode of action in multiple myeloma. The present paper is about the direct and indirect antitumor effects of lenalidomide on malignant plasmacells, bone marrow microenvironment, bone resorption and host’s immune response. The molecular mechanisms and targets of lenalidomide remain largely unknown, but recent evidence shows cereblon (CRBN) as a possible mediator of its therapeutical effects. 1. Introduction Lenalidomide and pomalidomide are synthetic compounds derived by modifying the chemical structure of thalidomide [1]. In particular, as shown in Figure 1, lenalidomide has been synthesized from the structural bone of thalidomide molecule. Lenalidomide has been developed by adding an amino group (NH2–) at 4th position of phthaloyl ring and by removing the carbonyl group (C=O) of the 4-amino-substituted phthaloyl ring. This drug is the result of the pressing need to develop molecules with enhanced immunomodulatory and antitumor activity in comparison to thalidomide. Lenalidomide, which possesses pleiotropic properties, belongs to the second generation of immunomodulatory drugs (IMiDs). Figure 1: Lenalidomide and thalidomide structure. Lenalidomide and its parental molecule thalidomide have shown therapeutical activity in various malignancies [2–21]. The US Food and Drug Administration (FDA) first approved lenalidomide for the treatment of patients suffering from 5q-myelodysplastic syndrome [22]. However, because of the proven activity of thalidomide in multiple myeloma (MM), the clinical activity of lenalidomide has been evaluated more extensively in this neoplasia [7–12], in respect to other B-cell neoplasia. The favourable toxic profile of lenalidomide and its antitumor activity emerged from phase I and phase II studies in relapsed or refractory MM patients [23–25]. These encouraging results led to the design of two large, phase III, multinational, randomized, double-blind, placebo-controlled, registration trials (MM-009 in US and Canada and MM-010 in Europe, Australia, and Israel) in this setting of patients. In both studies, patients were randomly assigned to receive 25?mg of lenalidomide or placebo on days 1 to 21 of 28-day cycles plus dexamethasone (40?mg on days 1 to 4, 9 to 12 and 17 to 20 for the

References

[1]  L. G. Corral and G. Kaplan, “Immunomodulation by thalidomide and thalidomide analogues,” Annals of the Rheumatic Diseases, vol. 58, supplement 1, pp. I107–I113, 1999.
[2]  A. List, S. Kurtin, D. J. Roe et al., “Efficacy of lenalidomide in myelodysplastic syndromes,” The New England Journal of Medicine, vol. 352, no. 6, pp. 549–557, 2005.
[3]  A. F. List, “Lenalidomide: from bench to bedside (part 1),” Cancer Control, vol. 13, supplement 2-3, 2006.
[4]  A. F. List, A. F. Baker, S. Green, and W. Bellamy, “Lenalidomide: targeted anemia therapy for myelodysplastic syndromes,” Cancer Control, vol. 13, supplement 4–11, 2006.
[5]  A. Raza, J. A. Reeves, E. J. Feldman et al., “Phase 2 study of lenalidomide in transfusion-dependent, low-risk, and intermediate-1-risk myelodysplastic syndromes with karyotypes other than deletion 5q,” Blood, vol. 111, no. 1, pp. 86–93, 2008.
[6]  A. List, G. Dewald, J. Bennett et al., “Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion,” The New England Journal of Medicine, vol. 355, no. 14, pp. 1456–1465, 2006.
[7]  J. D. Tariman, “Lenalidomide: a new agent for patients with relapsed or refractory multiple myeloma,” Clinical Journal of Oncology Nursing, vol. 11, no. 4, pp. 569–574, 2007.
[8]  D. M. Weber, C. Chen, R. Niesvizky et al., “Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America,” The New England Journal of Medicine, vol. 357, no. 21, pp. 2133–2142, 2007.
[9]  R. Baz, E. Walker, M. A. Karam et al., “Lenalidomide and pegylated liposomal doxorubicin-based chemotherapy for relapsed or refractory multiple myeloma: safety and efficacy,” Annals of Oncology, vol. 17, no. 12, pp. 1766–1771, 2006.
[10]  R. Niesvizky, D. S. Jayabalan, P. J. Christos et al., “BiRD (Biaxin [clarithromycin]/revlimid [lenalidomide]/dexamethasone) combination therapy results in high complete- and overall-response rates in treatment-naive symptomatic multiple myeloma,” Blood, vol. 111, no. 3, pp. 1101–1109, 2008.
[11]  S. V. Rajkumar, S. Hayman, G. S. Nowakowski et al., “Combination therapy with thalidomide and dexamethasone in patients with newly diagnosed multiple myeloma not undergoing upfront autologous stem cell transplantation: a phase II trial,” Haematologica, vol. 90, no. 12, pp. 1650–1654, 2005.
[12]  A. Palumbo, P. Falco, P. Corradini et al., “Melphalan, prednisone, and lenalidomide treatment for newly diagnosed myeloma: a report from the GIMEMA—Italian Multiple Myeloma Network,” Journal of Clinical Oncology, vol. 25, no. 28, pp. 4459–4465, 2007.
[13]  A. Chanan-Khan, K. C. Miller, L. Musial et al., “Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia: results of a phase II study,” Journal of Clinical Oncology, vol. 24, no. 34, pp. 5343–5349, 2006.
[14]  A. Chanan-Khan and C. W. Porter, “Immunomodulating drugs for chronic lymphocytic leukaemia,” Lancet Oncology, vol. 7, no. 6, pp. 480–488, 2006.
[15]  A. G. Ramsay, A. J. Johnson, A. M. Lee et al., “Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug,” The Journal of Clinical Investigation, vol. 118, no. 7, pp. 2427–2437, 2008.
[16]  A. Ferrajoli, B. N. Lee, E. J. Schlette et al., “Lenalidomide induces complete and partial remissions in patients with relapsed and refractory chronic lymphocytic leukemia,” Blood, vol. 111, no. 11, pp. 5291–5297, 2008.
[17]  A. Dispenzieri, M. Q. Lacy, S. R. Zeldenrust et al., “The activity of lenalidomide with or without dexamethasone in patients with primary systemic amyloidosis,” Blood, vol. 109, no. 2, pp. 465–470, 2007.
[18]  M. A. Gertz, R. Comenzo, R. H. Falk et al., “Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis,” American Journal of Hematology, vol. 79, no. 4, pp. 319–328, 2005.
[19]  P. H. Wiernik, I. S. Lossos, J. M. Tuscano et al., “Lenalidomide monotherapy in relapsed or refractory aggressive non-Hodgkin's lymphoma,” Journal of Clinical Oncology, vol. 26, no. 30, pp. 4952–4957, 2008.
[20]  A. Tefferi, J. Cortes, S. Verstovsek et al., “Lenalidomide therapy in myelofibrosis with myeloid metaplasia,” Blood, vol. 108, no. 4, pp. 1158–1164, 2006.
[21]  S. P. Treon, C. J. Patterson, Z. R. Hunter, and A. R. Branagan, “Phase II study of CC-5013 (revlimid) and rituximab in Waldenstrom's macroglobulinemia: preliminary safety and efficacy results,” ASH Annual Meeting Abstracts, vol. 106, no. 11, abstract 2443, 2005.
[22]  A. A. Chanan-Khan and B. D. Cheson, “Lenalidomide for the treatment of B-cell malignancies,” Journal of Clinical Oncology, vol. 26, no. 9, pp. 1544–1552, 2008.
[23]  M. T. G. Zangari, J. Zeldis, P. Eddlemon, F. Saghafifar, and B. Barlogie, “Results of phase I study of CC-5013 for the treatment of multiple myeloma (MM) patients who relapse after high dose chemotherapy (HDCT),” Blood, vol. 98, abstract 775a, 2001.
[24]  P. G. Richardson, R. L. Schlossman, E. Weller et al., “Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma,” Blood, vol. 100, no. 9, pp. 3063–3067, 2002.
[25]  P. G. Richardson, E. Blood, C. S. Mitsiades et al., “A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma,” Blood, vol. 108, no. 10, pp. 3458–3464, 2006.
[26]  M. Dimopoulos, A. Spencer, M. Attal et al., “Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma,” The New England Journal of Medicine, vol. 357, no. 21, pp. 2123–2132, 2007.
[27]  M. A. Dimopoulos, C. Chen, A. Spencer et al., “Long-term follow-up on overall survival from the MM-009 and MM-010 phase III trials of lenalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma,” Leukemia, vol. 23, no. 11, pp. 2147–2152, 2009.
[28]  S. V. Rajkumar, S. Jacobus, N. S. Callander et al., “Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial,” The Lancet Oncology, vol. 11, no. 1, pp. 29–37, 2010.
[29]  A. Palumbo, F. Cavallo, I. Hardan, et al., “A phase III study to compare melphalan, prednisone, lenalidomide (MPR) versus melphalan 200 mg/m2 and autologous transplantation (MEL200) in newly diagnosed multiple myeloma patients,” Blood, vol. 116, abstract 3573, 2010.
[30]  J. A. Zonder, J. Crowley, M. A. Hussein et al., “Lenalidomide and high-dose dexamethasone compared with dexamethasone as initial therapy for multiple myeloma: a randomized Southwest Oncology Group trial (S0232),” Blood, vol. 116, no. 26, pp. 5838–5841, 2010.
[31]  F. Gay, S. V. Rajkumar, M. Coleman et al., “Clarithromycin (Biaxin)-lenalidomide-low-dose dexamethasone (BiRd) versus lenalidomide-low-dose dexamethasone (Rd) for newly diagnosed myeloma,” American Journal of Hematology, vol. 85, no. 9, pp. 664–669, 2010.
[32]  P. G. Richardson, E. Weller, S. Lonial et al., “Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma,” Blood, vol. 116, no. 5, pp. 679–686, 2010.
[33]  S. Knop, C. Langer, M. Engelhardt, et al., “The efficacy and safety of RAD (lenalidomide, adriamycin and dexamethasone) in newly diagnosed multiple myeloma—first results of a phase II trial by the German DSMM Group,” Blood, vol. 116, abstract 1945, 2010.
[34]  S. K. Kumar, I. Flinn, S. J. Noga, et al., “Novel three-and four drug combination regimens of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide, for previously untreated multiple myeloma: results from the multicenter, randomized, phase 2 EVOLUTION Study,” Blood, vol. 116, abstract 621, 2010.
[35]  A. J. Jakubowiak, D. E. Reece, C. C. Hofmeister, et al., “Lenalidomide, bortezomib, pegylated liposomal doxorubicin, and dexamethasone in newly diagnosed multiple myeloma: updated results of phase I/II MMRC trial,” Blood, vol. 114, abstract 132, 2009.
[36]  W. M. Kuehl and P. L. Bergsagel, “Multiple myeloma: evolving genetic events and host interactions,” Nature Reviews Cancer, vol. 2, no. 3, pp. 175–187, 2002.
[37]  T. Hideshima, P. L. I. Bergsagel, W. M. Kuehl, and K. C. Anderson, “Advances in biology of multiple myeloma: clinical applications,” Blood, vol. 104, no. 3, pp. 607–618, 2004.
[38]  P. L. Bergsagel and W. M. Kuehl, “Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma,” Immunological Reviews, vol. 194, pp. 96–104, 2003.
[39]  M. Urashima, G. Teoh, A. Ogata et al., “Characterization of p16(INK4A) expression in multiple myeloma and plasma cell leukemia,” Clinical Cancer Research, vol. 3, no. 11, pp. 2173–2179, 1997.
[40]  G. Guillerm, E. Gyan, D. Wolowiec et al., “p16INK4a and p15INK4b gene methylations in plasma cells from monoclonal gammopathy of undetermined significance,” Blood, vol. 98, no. 1, pp. 244–246, 2001.
[41]  M. S. Kulkarni, J. L. Daggett, T. P. Bender, W. M. Kuehl, P. L. Bergsagel, and M. E. Williams, “Frequent inactivation of the cyclin-dependent kinase inhibitor p18 by homozygous deletion in multiple myeloma cell lines: ectopic p18 expression inhibits growth and induces apoptosis,” Leukemia, vol. 16, no. 1, pp. 127–134, 2002.
[42]  G. Teoh and K. C. Anderson, “Interaction of tumor and host cells with adhesion and extracellular matrix molecules in the development of multiple myeloma,” Hematology/Oncology Clinics of North America, vol. 11, no. 1, pp. 27–42, 1997.
[43]  T. Hideshima, D. Chauhan, T. Hayashi et al., “The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma,” Molecular Cancer Therapeutics, vol. 1, no. 7, pp. 539–544, 2002.
[44]  J. S. Damiano, A. E. Cress, L. A. Hazlehurst, A. A. Shtil, and W. S. Dalton, “Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines,” Blood, vol. 93, no. 5, pp. 1658–1667, 1999.
[45]  L. A. Hazlehurst, J. S. Damiano, I. Buyuksal, W. J. Pledger, and W. S. Dalton, “Adhesion to fibronectin via β1 integrins regulates p27(kip1) levels and contributes to cell adhesion mediated drug resistance (CAM-DR),” Oncogene, vol. 19, no. 38, pp. 4319–4327, 2000.
[46]  D. Chauhan, H. Uchiyama, Y. Akbarali et al., “Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-κB,” Blood, vol. 87, no. 3, pp. 1104–1112, 1996.
[47]  B. Dankbar, T. Padró, R. Leo et al., “Vascular endothelial growth factor and interleukin-6 in paracrine tumor- stromal cell interactions in multiple myeloma,” Blood, vol. 95, no. 8, pp. 2630–2636, 2000.
[48]  D. Gupta, S. P. Treon, Y. Shima et al., “Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications,” Leukemia, vol. 15, no. 12, pp. 1950–1961, 2001.
[49]  B. Klein, X. G. Zhang, M. Jourdan et al., “Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6,” Blood, vol. 73, no. 2, pp. 517–526, 1989.
[50]  T. Hideshima, D. Chauhan, R. Schlossman, P. Richardson, and K. C. Anderson, “The role of tumor necrosis factor α in the pathophysiology of human multiple myeloma: therapeutic applications,” Oncogene, vol. 20, no. 33, pp. 4519–4527, 2001.
[51]  R. Catlett-Falcone, T. H. Landowski, M. M. Oshiro et al., “Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells,” Immunity, vol. 10, no. 1, pp. 105–115, 1999.
[52]  D. Puthier, R. Bataille, and M. Amiot, “IL-6 up-regulates mcl-1 in human myeloma cells through JAK / STAT rather than ras / MAP kinase pathway,” European Journal of Immunology, vol. 29, no. 12, pp. 3945–3950, 1999.
[53]  M. Jourdan, J. L. Veyrune, J. De Vos, N. Redal, G. Couderc, and B. Klein, “A major role for Mcl-1 antiapoptotic protein in the IL-6-induced survival of human myeloma cells,” Oncogene, vol. 22, no. 19, pp. 2950–2959, 2003.
[54]  B. Zhang, I. Gojo, and R. G. Fenton, “Myeloid cell factor-1 is a critical survival factor for multiple myeloma,” Blood, vol. 99, no. 6, pp. 1885–1893, 2002.
[55]  D. Verhelle, L. G. Corral, K. Wong et al., “Lenalidomide and CC-4047 inhibit the proliferation of malignant B cells while expanding normal CD34+ progenitor cells,” Cancer Research, vol. 67, no. 2, pp. 746–755, 2007.
[56]  L. Escoubet-Lozach, I. L. Lin, K. Jensen-Pergakes et al., “Pomalidomide and lenalidomide induce p21WAF-1 expression in both lymphoma and multiple myeloma through a LSD1-mediated epigenetic mechanism,” Cancer Research, vol. 69, no. 18, pp. 7347–7356, 2009.
[57]  A. K. Gandhi, J. Kang, L. Capone et al., “Dexamethasone synergizes with lenalidomide to inhibit multiple myeloma tumor growth, but reduces lenalidomide-induced immunomodulation of T and NK cell function,” Current Cancer Drug Targets, vol. 10, no. 2, pp. 155–167, 2010.
[58]  L. G. Corral, P. A. Haslett, G. W. Muller et al., “Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-α,” Journal of Immunology, vol. 163, no. 1, pp. 380–386, 1999.
[59]  V. Kotla, S. Goel, S. Nischal et al., “Mechanism of action of lenalidomide in hematological malignancies,” Journal of Hematology & Oncology, vol. 2, article 36, 2009.
[60]  J. L. Xu, R. Lai, T. Kinoshita, N. Nakashima, and T. Nagasaka, “Proliferation, apoptosis, and intratumoral vascularity in multiple myeloma: correlation with the clinical stage and cytological grade,” Journal of Clinical Pathology, vol. 55, no. 7, pp. 530–534, 2002.
[61]  K. Dredge, R. Horsfall, S. P. Robinson et al., “Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro,” Microvascular Research, vol. 69, no. 1-2, pp. 56–63, 2005.
[62]  D. Chauhan, T. Hideshima, and K. C. Anderson, “Apoptotic signaling in multiple myeloma: therapeutic implications,” International Journal of Hematology, vol. 78, no. 2, pp. 114–120, 2003.
[63]  Y. Dai, P. Dent, and S. Grant, “Tumor necrosis factorrelated apoptosis-inducing ligand (TRAIL) promotes mitochondrial dysfunction and apoptosis induced by 7-hydroxystaurosporine and mitogenactivated protein kinase kinase inhibitors in human leukemia cells that ectopically express Bcl-2 and Bcl-xL,” Molecular Pharmacology, vol. 64, no. 6, pp. 1402–1409, 2003.
[64]  D. Chauhan, T. Hideshima, S. Rosen, J. C. Reed, S. Kharbanda, and K. C. Anderson, “Apaf-1/cytochrome c independent and Smac dependent induction of apoptosis in multiple myeloma cells,” The Journal of Biological Chemistry, vol. 276, no. 27, pp. 24453–24456, 2001.
[65]  Z. L. Chu, T. A. McKinsey, L. Liu, J. J. Gentry, M. H. Malim, and D. W. Ballard, “Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-κB control,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 19, pp. 10057–10062, 1997.
[66]  S. Kreuz, D. Siegmund, P. Scheurich, and H. Wajant, “NF-κB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling,” Molecular and Cellular Biology, vol. 21, no. 12, pp. 3964–3973, 2001.
[67]  W. Zou, “Immunosuppressive networks in the tumour environment and their therapeutic relevance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 263–274, 2005.
[68]  M. Urashima, A. Ogata, D. Chauhan et al., “Transforming growth factor-β1: differential effects on multiple myeloma versus normal B cells,” Blood, vol. 87, no. 5, pp. 1928–1938, 1996.
[69]  H. Ogawara, H. Handa, T. Yamazaki et al., “High Th1/Th2 ratio in patients with multiple myeloma,” Leukemia Research, vol. 29, no. 2, pp. 135–140, 2005.
[70]  B. Maecker, K. S. Anderson, M. S. von Bergwelt-Baildon et al., “Viral antigen-specific CD8+ T-cell responses are impaired in multiple myeloma,” British Journal of Haematology, vol. 121, no. 6, pp. 842–848, 2003.
[71]  M. V. Dhodapkar, M. D. Geller, D. H. Chang et al., “A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma,” Journal of Experimental Medicine, vol. 197, no. 12, pp. 1667–1676, 2003.
[72]  M. J. Smyth, D. I. Godfrey, and J. A. Trapani, “A fresh look at tumor immunosurveillance and immunotherapy,” Nature Immunology, vol. 2, no. 4, pp. 293–299, 2001.
[73]  M. Jarahian, C. Watzl, Y. Issa, P. Altevogt, and F. Momburg, “Blockade of natural killer cell-mediated lysis by NCAM140 expressed on tumor cells,” International Journal of Cancer, vol. 120, no. 12, pp. 2625–2634, 2007.
[74]  P. A. Haslett, W. A. Hanekom, G. Muller, and G. Kaplan, “Thalidomide and a thalidomide analogue drug costimulate virus-specific CD8+ T cells in vitro,” Journal of Infectious Diseases, vol. 187, no. 6, pp. 946–955, 2003.
[75]  R. LeBlanc, T. Hideshima, L. P. Catley et al., “Immunomodulatory drug costimulates T cells via the B7-CD28 pathway,” Blood, vol. 103, no. 5, pp. 1787–1790, 2004.
[76]  R. D. Brown, B. Pope, A. Murray et al., “Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-β1 and interleukin-10,” Blood, vol. 98, no. 10, pp. 2992–2998, 2001.
[77]  M. Ratta, F. Fagnoni, A. Curti et al., “Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6,” Blood, vol. 100, no. 1, pp. 230–237, 2002.
[78]  D. I. Gabrilovich, H. L. Chen, K. R. Girgis et al., “Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells,” Nature Medicine, vol. 2, no. 10, pp. 1096–1103, 1996.
[79]  P. H. Schafer, A. K. Gandhi, M. A. Loveland et al., “Enhancement of cytokine production and AP-1 transcriptional activity in T cells by thalidomide-related immunomodulatory drugs,” Journal of Pharmacology and Experimental Therapeutics, vol. 305, no. 3, pp. 1222–1232, 2003.
[80]  T. Hayashi, T. Hideshima, M. Akiyama et al., “Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application,” British Journal of Haematology, vol. 128, no. 2, pp. 192–203, 2005.
[81]  A. Bendelac, M. N. Rivera, S. H. Park, and J. H. Roark, “Mouse CD1-specific NK1 T cells: development, specificity, and function,” Annual Review of Immunology, vol. 15, pp. 535–562, 1997.
[82]  C. A. Biron, K. B. Nguyen, G. C. Pien, L. P. Cousens, and T. P. Salazar-Mather, “Natural killer cells in antiviral defense: function and regulation by innate cytokines,” Annual Review of Immunology, vol. 17, pp. 189–220, 1999.
[83]  K. Takeda, S. Seid, K. Ogasawara et al., “Liver NK1.1+ CD4+ αβ T cells activated by IL-12 as a major effector in inhibition of experimental tumor metastasis,” Journal of Immunology, vol. 156, no. 9, pp. 3366–3373, 1996.
[84]  J. Cui, T. Shin, T. Kawano et al., “Requirement for V(α)14 NKT cells in IL-12-mediated rejection of tumors,” Science, vol. 278, no. 5343, pp. 1623–1626, 1997.
[85]  G. Trinchieri and P. Scott, “Interleukin-12: a proinflammatory cytokine with immunoregulatory functions,” Research in Immunology, vol. 146, no. 7-8, pp. 423–431, 1995.
[86]  S. Fujii, K. Shimizu, R. M. Steinman, and M. V. Dhodapkar, “Detection and activation of human Vα24+ natural killer T cells using α-galactosyl ceramide-pulsed dendritic cells,” Journal of Immunological Methods, vol. 272, no. 1-2, pp. 147–159, 2003.
[87]  C. Carnaud, D. Lee, O. Donnars et al., “Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells,” Journal of Immunology, vol. 163, no. 9, pp. 4647–4650, 1999.
[88]  T. Hayashi, T. Hideshima, M. Akiyama et al., “Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application,” British Journal of Haematology, vol. 128, no. 2, pp. 192–203, 2005.
[89]  N. Takahashi, K. Maeda, A. Ishihara, S. Uehara, and Y. Kobayashi, “Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals,” Frontiers in Bioscience, vol. 16, no. 1, pp. 21–30, 2011.
[90]  E. Terpos, M. A. Dimopoulos, and O. Sezer, “The effect of novel anti-myeloma agents on bone metabolism of patients with multiple myeloma,” Leukemia, vol. 21, no. 9, pp. 1875–1884, 2007.
[91]  I. Breitkreutz, M. S. Raab, S. Vallet et al., “Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma,” Leukemia, vol. 22, no. 10, pp. 1925–1932, 2008.
[92]  I. Takumi and H. Hiroshi, “Deciphering the mystery of thalidomide teratogenicity,” Congenital Anomalies, vol. 52, no. 1, pp. 1–7, 2012.
[93]  Y. X. Zhu, E. Braggio, C. X. Shi, et al., “Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide,” Blood, vol. 118, no. 18, pp. 4771–4779, 2011.
[94]  X. B. Chang and A. K. Stewart, “What is the functional role of the thalidomide binding protein cereblon?” International Journal of Biochemistry and Molecular Biology, vol. 2, no. 3, pp. 287–294, 2011.
[95]  Y. Cang, J. Zhang, S. A. Nicholas et al., “Deletion of DDB1 in mouse brain and lens leads to p53-dependent elimination of proliferating cells,” Cell, vol. 127, no. 5, pp. 929–940, 2006.
[96]  Y. Cang, J. Zhang, S. A. Nicholas, A. L. Kim, P. Zhou, and S. P. Goff, “DDB1 is essential for genomic stability in developing epidermis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 8, pp. 2733–2737, 2007.
[97]  A. Lopez-Girona, D. Mendy, K. Miller, et al., “Direct binding with cereblon mediates the antiproliferative and immunomodulatory action of lenalidomide and pomalidomide,” in Proceedings of the ASH Annual Meeting and Exposition, 2011.
[98]  D. Heintel, A. Bolomsky, M. Schreder, et al., “High expression of the thalidomide-binding protein cereblon (CRBN) is associated with improved clinical response in patients with multiple myeloma treated with lenalidomide and dexamethasone,” in Proceedings of the ASH Annual Meeting and Exposition, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413