Background Bivalves comprise around 30,000 extant species and have received much attention for their importance in ecosystems, aquaculture and evolutionary studies. Despite the increasing application of real-time quantitative reverse transcription PCR (qRT-PCR) in gene expression studies on bivalve species, little research has been conducted on reference gene selection which is critical for reliable and accurate qRT-PCR analysis. For scallops, systematic evaluation of reference genes that can be used among tissues or embryo/larva stages is lacking, and β-actin (ACT) is most frequently used as qRT-PCR reference gene without validation. Results In this study, 12 commonly used candidate reference genes were selected from the transcriptome data of Yesso scallop (Patinopecten yessoensis) for suitable qRT-PCR reference genes identification. The expression of these genes in 36 tissue samples and 15 embryo/larva samples under normal physiological conditions was examined by qRT-PCR, and their expression stabilities were evaluated using three statistic algorithms, geNorm, NormFinder, and comparative ?Ct method. Similar results were obtained by the three approaches for the most and the least stably expressed genes. Final comprehensive ranking for the 12 genes combing the results from the three programs showed that, for different tissues, DEAD-box RNA helicase (HELI), ubiquitin (UBQ), and 60S ribosomal protein L16 (RPL16) were the optimal reference genes combination, while for different embryo/larva stages, gene set containing Cytochrome B (CB), Cytochrome C (CC), Histone H3.3 (His3.3), and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were recommended for qRT-PCR normalization. ACT was among the least stable genes for both adult tissues and embryos/larvae. Conclusions This work constitutes the first systematic analysis on reference genes selection for qRT-PCR normalization in scallop under normal conditions. The suitable reference genes we recommended will be useful for the identification of genes related to biological processes in Yesso scallop, and also in the reference gene selection for other scallop or bivalve species.
References
[1]
Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29: 23-39. doi:10.1677/jme.0.0290023. PubMed: 12200227.
[2]
Valasek MA, Repa JJ (2005) The power of real-time PCR. Adv Physiol Educ 29: 151-159. doi:10.1152/advan.00019.2005. PubMed: 16109794.
[3]
Artico S, Nardeli SM, Brilhante O, Grossi-de-Sa MF, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10: 49. doi:10.1186/1471-2229-10-49. PubMed: 20302670.
[4]
Radoni? A, Thulke S, Mackay IM, Landt O, Siegert W et al. (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313: 856-862. doi:10.1016/j.bbrc.2003.11.177. PubMed: 14706621.
Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. BioTechniques 39: 75-88. doi:10.2144/05391RV01. PubMed: 16060372.
[7]
Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time PCR. Nat Protoc 1: 1559-1582. doi:10.1038/nprot.2006.236. PubMed: 17406449.
[8]
Hong SY, Seo PJ, Yang MS, Xiang F, Park CM (2008) Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol 8: 112. doi:10.1186/1471-2229-8-112. PubMed: 18992143.
[9]
Wan H, Zhao Z, Qian C, Sui Y, Malik AA et al. (2010) Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem 399: 257-261. doi:10.1016/j.ab.2009.12.008. PubMed: 20005862.
[10]
Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345: 646-651. doi:10.1016/j.bbrc.2006.04.140. PubMed: 16690022.
[11]
Dang W, Sun L (2011) Determination of internal controls for quantitative real time RT-PCR analysis of the effect of Edwardsiella tarda?infection on gene expression in turbot (Scophthalmus maximus). Fish Shellfish Immunol 30: 720-728. doi:10.1016/j.fsi.2010.12.028. PubMed: 21220029.
[12]
Tang YK, Yu JH, Xu P, Li JL, Li HX et al. (2012) Identification of housekeeping genes suitable for gene expression analysis in Jian carp (Cyprinus carpio var. jian). Fish Shellfish Immunol 33: 775-779. doi:10.1016/j.fsi.2012.06.027. PubMed: 22789712.
[13]
Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46: 69-81. doi:10.1016/S0165-022X(00)00129-9. PubMed: 11086195.
[14]
Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G et al. (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. BioTechniques 37: 112-119. 15283208.
[15]
Chen L, Zhong HY, Kuang JF, Li JG, Lu WJ et al. (2011) Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 234: 377-390. doi:10.1007/s00425-011-1410-3. PubMed: 21505864.
[16]
Shi G, Zhang Z, Feng D, Xu Y, Lu Y et al. (2010) Selection of reference genes for quantitative real-time reverse transcription-polymerase chain reaction in concanavalin A-induced hepatitis model. Anal Biochem 401: 81-90. doi:10.1016/j.ab.2010.02.007. PubMed: 20153286.
[17]
Araya MT, Siah A, Mateo D, Markham F, McKenna P et al. (2008) Selection and evaluation of housekeeping genes for haemocytes of soft-shell clams (Mya Arenaria) challenged with Vibrio splendidus. J Invertebr Pathol 99: 326-331. doi:10.1016/j.jip.2008.08.002. PubMed: 18793642.
[18]
Morga B, Arzul I, Faury N, Renault T (2010) Identification of genes from flat oyster Ostrea edulis as suitable housekeeping genes for quantitative real time PCR. Fish Shellfish Immunol 29: 937-945. doi:10.1016/j.fsi.2010.07.028. PubMed: 20696253.
[19]
Ren S, Zhang F, Li C, Jia C, Li S et al. (2010) Selection of housekeeping genes for use in quantitative reverse transcription PCR assays on the murine cornea. Mol Vis 16: 1076-1086. PubMed: 20596249.
[20]
Xiang-Hong J, Yan-Hong Y, Han-Jin X, Li-Long A, Ying-Mei X et al. (2011) Selection of reference genes for gene expression studies in PBMC from Bama miniature pig under heat stress. Vet Immunol Immunopathol 144: 160-166. doi:10.1016/j.vetimm.2011.07.004. PubMed: 21820186.
[21]
Guénin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C et al. (2009) Normalization of RT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60: 487-493. doi:10.1093/jxb/ern305. PubMed: 19264760.
[22]
Dumbauld BR, Ruesink JL, Rumrill SS (2009) The ecological role of bivalve shellfish aquaculture in the estuarine environment: A review with application to oyster and clam culture in West Coast (USA) estuaries. Aquaculture 290: 196-223. doi:10.1016/j.aquaculture.2009.02.033.
[23]
Zhang G, Fang X, Guo X, Li L, Luo R et al. (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490: 49-54. doi:10.1038/nature11413. PubMed: 22992520.
[24]
Takeuchi T, Kawashima T, Koyanagi R, Gyoja F, Tanaka M et al. (2012) Draft Genome of the Pearl Oyster Pinctada fucata: A Platform for Understanding Bivalve Biology. DNA Res 19: 117-130. doi:10.1093/dnares/dss005. PubMed: 22315334.
[25]
Hou R, Bao Z, Wang S, Su H, Li Y et al. (2011) Transcriptome sequencing and de novo analysis for Yesso scallop (Patinopecten yessoensis) using 454 GS FLX. PLOS ONE 6: e21560. doi:10.1371/journal.pone.0021560. PubMed: 21720557.
[26]
Wang S, Hou R, Bao Z, Du H, He Y et al. (2013) Transcriptome sequencing of Zhikong scallop (Chlamys farreri): Functional characterization and comparative transcriptomic analysis with Yesso scallop (Patinopecten yessoensis). PLOS ONE 8: e 63927.
[27]
Philipp EE, Kraemer L, Melzner F, Poustka AJ, Thieme S et al. (2012) Massively Parallel RNA Sequencing Identifies a Complex Immune Gene Repertoire in the lophotrochozoan Mytilus edulis. PLOS ONE 7: e33091. doi:10.1371/journal.pone.0033091. PubMed: 22448234.
[28]
de Lorgeril J, Zenagui R, Rosa RD, Piquemal D, Bachère E (2012) Whole Transcriptome Profiling of Successful Immune Response to Vibrio Infections in the Oyster Crassostrea gigas by Digital Gene Expression Analysis. PLOS ONE 6: e23142. PubMed: 21829707.
[29]
Huan P, Wang H, Liu B (2012) Transcriptomic Analysis of the Clam Meretrix meretrix?on Different Larval Stages. Mar Biotechnol NY 14: 69-78. doi:10.1007/s10126-011-9389-0. PubMed: 21603879.
[30]
Shi Y, Yu C, Gu Z, Zhan X, Wang Y et al. (2013) Characterization of the Pearl Oyster (Pinctada martensii) Mantle Transcriptome Unravels Biomineralization Genes. Mar Biotechnol NY 15: 175-187. doi:10.1007/s10126-012-9476-x. PubMed: 22941536.
[31]
Jiao Y, Wang H, Du X, Zhao X, Wang Q et al. (2012) Dermatopontin, a shell matrix protein gene from pearl oyster Pinctada martensii, participates in nacre formation. Biochem Biophys Res Commun 425: 679-683. doi:10.1016/j.bbrc.2012.07.099. PubMed: 22842462.
[32]
Zhang Z, Zhang Q (2012) Molecular cloning, characterization and expression of heat shock protein 70 gene from the oyster Crassostrea hongkongensis responding to thermal stress and exposure of Cu2+ and malachite green. Gene 497: 172-180. doi:10.1016/j.gene.2012.01.058. PubMed: 22310388.
[33]
Hu X, Guo H, He Y, Wang S, Zhang L et al. (2010) Molecular Characterization of Myostatin Gene from Zhikong scallop Chlamys farreri (Jones et Preston 1904). Genes Genet Syst 85: 207-218. doi:10.1266/ggs.85.207. PubMed: 21041979.
[34]
Tanguy A, Bierne N, Saavedra C, Pina B, Bachère E et al. (2008) Increasing genomic information in bivalves through new EST collections in four species: Development of new genetic markers for environmental studies and genome evolution. Gene 408: 27-36. doi:10.1016/j.gene.2007.10.021. PubMed: 18054177.
[35]
Cubero-Leon E, Ciocan CM, Minier C, Rotchell JM (2012) Reference gene selection for qPCR in mussel, Mytilus edulis, during gametogenesis and exogenous estrogen exposure. Environ Sci Pollut Res Int 19: 2728-2733. doi:10.1007/s11356-012-0772-9. PubMed: 22293909.
[36]
Llera-Herrera R, García-Gasca A, Huvet A, Ibarra AM (2012) Identification of a tubulin-α gene specifically expressed in testis and adductor muscle during stable reference gene selection in the hermaphrodite gonad of the lion’s paw scallop Nodipecten subnodosus. Mar Genomics 6: 33-44. doi:10.1016/j.margen.2012.03.003. PubMed: 22578657.
[37]
Bao X, Liu W, Jiang B, Su H, Li Y et al. (2011) Expression stability of reference genes for quantitative PCR in Japanese scallop Mizuhopecten yessoensis. Fish Sci ( In Chinese. ) 30: 603-608.
[38]
Andersen ?, Torgersen JS, Pagander HH, Magnesen T, Johnston IA (2009) Gene expression analyses of essential catch factors in the smooth and striated adductor muscles of larval, juvenile and adult great scallop (Pecten maximus). J Muscle Res Cell Motil 30: 233-242. doi:10.1007/s10974-009-9192-y. PubMed: 19943089.
[39]
Wang X, Liu B, Tang B, Xiang J (2011) Potential role of cathepsin B in the embryonic and larval development of clam Meretrix meretrix. J Exp Zool B Mol Dev Evol 316: 306-312. PubMed: 21319298.
[40]
Qin J, Huang Z, Chen J, Zou Q, You W et al. (2012) Sequencing and de novo analysis of Crassostrea angulata?(Fujian oyster) from 8 different developing phases using 454 GSFlx. PLOS ONE 7: e43653. doi:10.1371/journal.pone.0043653. PubMed: 22952730.
[41]
Du Y, Zhang L, Xu F, Huang B, Zhang G et al. (2013) Validation of housekeeping genes as internal controls for studying gene expression during Pacific oyster (Crassostrea gigas) development by quantitative real-time PCR. Fish Shellfish Immunol 34: 939-945. doi:10.1016/j.fsi.2012.12.007. PubMed: 23357023.
[42]
Wang QC (1984) Introduction of Japanese scallop and prospect of culture it in northern China. Fish Sci 3: 24-27.
[43]
Hu X, Bao Z, Hu J, Shao M, Zhang L et al. (2006) Cloning and characterization of tryptophan 2,3-dioxygenase gene of Zhikong scallop?Chlamys farreri?(Jones and Preston 1904). Aquac Res 37: 1187-1194. doi:10.1111/j.1365-2109.2006.01546.x.
[44]
Bacchetti De Gregoris T, Borra M, Biffali E, Bekel T, Burgess JG et al. (2009) Construction of an adult barnacle (Balanus amphitrite) cDNA library and selection of reference genes for quantitative RT-PCR studies. BMC Mol Biol 10: 62. doi:10.1186/1471-2199-10-62. PubMed: 19552808.
[45]
Martínez-Beamonte R, Navarro MA, Larraga A, Strunk M, Barranquero C et al. (2011) Selection of reference genes for gene expression studies in rats. J Biotechnol 151: 325-334. doi:10.1016/j.jbiotec.2010.12.017. PubMed: 21219943.
[46]
Fan C, Ma J, Guo Q, Li X, Wang H et al. (2013) Selection of Reference Genes for Quantitative Real-Time PCR in Bamboo (Phyllostachys edulis). PLOS ONE 8: e56573. doi:10.1371/journal.pone.0056573. PubMed: 23437174.
[47]
Li Q, Domig KJ, Ettle T, Windisch W, Mair C et al. (2011) Evaluation of Potential Reference Genes for Relative Quantification by RT-qPCR in Different Porcine Tissues Derived from Feeding Studies. Int J Mol Sci 12: 1727-1734. doi:10.3390/ijms12031727. PubMed: 21673918.
Zhang Y, Chen D, Smith MA, Zhang B, Pan X (2012) Selection of reliable reference genes in Caenorhabditis elegans?for analysis of nanotoxicity. PLOS ONE 7: e31849. doi:10.1371/journal.pone.0031849. PubMed: 22438870.
[50]
Teng X, Zhang Z, He G, Yang L, Li F (2012) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in four lepidopteran insects. J Insect Sci 12: 60. PubMed: 22938136.
[51]
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: research0034. PubMed: 12184808.
[52]
Andersen CL, Jensen JL, ?rntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64: 5245-5250. doi:10.1158/0008-5472.CAN-04-0496. PubMed: 15289330.
[53]
Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7: 33. doi:10.1186/1471-2199-7-33. PubMed: 17026756.
[54]
Martino A, Cabiati M, Campan M, Prescimone T, Minocci D et al. (2011) Selection of reference genes for normalization of real-time PCR data in minipig heart failure model and evaluation of TNF-α mRNA expression. J Biotechnol 153: 92-99. doi:10.1016/j.jbiotec.2011.04.002. PubMed: 21510983.
[55]
Lee JM, Roche JR, Donaghy DJ, Thrush A, Sathish P (2010) Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.). BMC Mol Biol 11: 8. doi:10.1186/1471-2199-11-8. PubMed: 20089196.
[56]
Barsalobres-Cavallari CF, Severino FE, Maluf MP, Maia IG (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 10: 1. doi:10.1186/1471-2199-10-1. PubMed: 19126214.
[57]
Die JV, Román B, Nadal S, González-Verdejo CI (2010) Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 232: 145-153. doi:10.1007/s00425-010-1158-1. PubMed: 20379832.