全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Numerical Simulation of Airfoil Aerodynamic Penalties and Mechanisms in Heavy Rain

DOI: 10.1155/2013/590924

Full-Text   Cite this paper   Add to My Lib

Abstract:

Numerical simulations that are conducted on a transport-type airfoil, NACA 64-210, at a Reynolds number of and LWC of 25?g/m3 explore the aerodynamic penalties and mechanisms that affect airfoil performance in heavy rain conditions. Our simulation results agree well with the experimental data and show significant aerodynamic penalties for the airfoil in heavy rain. The maximum percentage decrease in is reached by 13.2% and the maximum percentage increase in by 47.6%. Performance degradation in heavy rain at low angles of attack is emulated by an originally creative boundary-layer-tripped technique near the leading edge. Numerical flow visualization technique is used to show premature boundary-layer separation at high angles of attack and the particulate trajectories at various angles of attack. A mathematic model is established to qualitatively study the water film effect on the airfoil geometric changes. All above efforts indicate that two primary mechanisms are accountable for the airfoil aerodynamic penalties. One is to cause premature boundary-layer transition at low AOA and separation at high AOA. The other occurs at times scales consistent with the water film layer, which is thought to alter the airfoil geometry and increase the mass effectively. 1. Introduction The aerodynamic penalty of aircraft flight through heavy rain has been deemed to be a critical cause in many severe aviation accidents. The Eastern Flight 066 accident at Kennedy Airport (NTSB, 1976) is a telling example, though the factor of heavy rain was not taken into consideration at that time [1]. Three years later, another Flight named 693, a Boeing 727-25 civil airplane, suffered from an intense rainfall associated with wind shears on its eventual routine to the Atlanta International Airport [2]. Several severe aviation accidents in 1981 aroused people’s consciousness of the seriousness of rain influence on aircraft flight [3]. Investigation of rain effect on aircraft flight was begun with the wind tunnel test, and the earliest was conducted by Rhode in 1941 [4]. It dealt with the situation of an aircraft encountering heavy rain at moderate cruising altitude of about 5000?ft and concluded that, the heavy rain exposure time is not sufficient to force the aircraft to the ground. In 1982, Haines and Luers did a research concerning the frequency and intensity of very heavy rains and their effects on a landing aircraft [1]. In 1987, Hansman and Criag compared the aerodynamic performance degradation of NACA 64-210, NACA 0012, and Wortman FX 67-K170 airfoils under the low Reynolds numbers

References

[1]  P. A. Haines and J. K. Luers, “Aerodynamic penalties of heavy rain on a landing aircraft,” Tech. Rep. CR-156885, NASA, 1982.
[2]  J. K. Luers and P. A. Haines, “Heavy rain influence on airplane accidents,” Journal of Aircraft, vol. 20, no. 2, pp. 187–191, 1983.
[3]  J. K. Luers and P. A. Haines, “The effect of heavy rain on wind shear attributed accidents,” in Proceedings of the 19th Aerospace Sciences Meeting, Paper 81-0390, 1981.
[4]  R. V. Rhode, “Some effects of rainfall on flight of airplanes and on instrument indications,” NASA TN-903, 1941.
[5]  R. J. Hansman Jr. and A. P. Craig, “Low reynolds number tests of NACA 64-210, NACA 0012, and wortman FX67-K170 airfoils in rain,” Journal of Aircraft, vol. 24, no. 8, pp. 559–566, 1987.
[6]  B. A. Campbell and G. M. Bezos, “Steady state and transitional aerodynamic characteristics of a wing in simulated heavy rain,” Tech. Rep. TP-2932, NASA, 1989.
[7]  L. P. Yip, “Wind tunnel investigation of a full-scale canard-configured general aviation aircraft,” Tech. Rep. TP-2382, NASA, 1985.
[8]  R. J. Hansman Jr. and M. F. Barsotti, “The aerodynamic effect of surface wetting effects on a laminar flow airfoil in simulated heavy rain,” Journal of Aircraft, vol. 22, no. 12, pp. 1049–1053, 1985.
[9]  G. M. Bezos, R. E. Dunham Jr., G. L. Gentry, and W. Edward Melson Jr., “Wind tunnel aerodynamic characteristics of a transport-type airfoil in a simulated heavy rain environment,” Tech. Rep. TP-3184, NASA, 1992.
[10]  B. E. Thompson, J. Jang, and J. L. Dion, “Wing performance in moderate rain,” Journal of Aircraft, vol. 32, no. 5, pp. 1034–1039, 1995.
[11]  B. E. Thompson and J. Jang, “Aerodynamic efficiency of wings in rain,” Journal of Aircraft, vol. 33, no. 6, pp. 1047–1053, 1996.
[12]  J. R. Valentine and R. A. Decker, “A Lagrangian-Eulerian scheme for flow around an airfoil in rain,” International Journal of Multiphase Flow, vol. 21, no. 4, pp. 639–648, 1995.
[13]  J. R. Valentine and R. A. Decker, “Tracking of raindrops in flow over an airfoil,” Journal of Aircraft, vol. 32, no. 1, pp. 100–105, 1995.
[14]  B. E. Thompson and M. R. Marrochello, “Rivulet formation in surface-water flow on an airfoil in rain,” AIAA Journal, vol. 37, no. 1, pp. 45–49, 1999.
[15]  T. Wan and S.-W. Wu, “Aerodynamic analysis under the influence of heavy rain,” Journal of Aeronautics, Astronautics and Aviation A, vol. 41, no. 3, pp. 173–180, 2009.
[16]  T. Wan and S. P. Pan, “Aerodynamic efficiency study under the influence of heavy rain via two-phase flow approach,” in Proceedings of the 27th International Congress of the Aeronautical Sciences, 2010.
[17]  T. Wan and C. J. Chou, “Reinvestigation of high lift airfoil under the influence of heavy rain effects,” in Proceedings of the 50th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tenn, USA, 2012.
[18]  T. Wan and B. C. Song, “Aerodynamic performance study of a modern blended-wing-body aircraft under severe weather simulation,” in Proceedings of the 50th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tenn, USA, 2012.
[19]  R.-M. Zhang and Y.-H. Cao, “Study of aerodynamic characteristics of an airfoil in rain,” Journal of Aerospace Power, vol. 25, no. 9, pp. 2064–2069, 2010.
[20]  M. Ismail, C. Yihua, Z. Ming, and A. Bakar, “Numerical study of airfoils aerodynamic performance in heavy rain environment,” World Academy of Science, Engineering and Technology, vol. 67, pp. 1052–1060, 2012.
[21]  Fluent 6.3 User’s Guide, 2006.
[22]  A. C. Best, “The size distribution of raindrops,” Quarterly Journal of the Royal Meteorological Society, vol. 76, no. 327, pp. 16–36, 1950.
[23]  C. W. Ulbrich, “Natural variations in the analytical form of the raindrop size distribution,” Journal of Climate & Applied Meteorology, vol. 22, no. 10, pp. 1764–1775, 1983.
[24]  J. S. Marshall and W. M. K. Palmer, “The distribution of raindrops with size,” Journal of Meteorology, vol. 5, no. 4, pp. 165–166, 1948.
[25]  J. Joss and A. Waldvogel, “Raindrop size distribution and sampling size errors,” Journal of the Atmospheric Sciences, vol. 26, no. 3, pp. 566–569, 1969.
[26]  A. H. Markowitz, “Raindrop size distribution expressions,” Journal of Applied Meteorology, vol. 15, no. 9, pp. 1029–1031, 1976.
[27]  C. Mundo, M. Sommerfeld, and C. Tropea, “Droplet-wall collisions: experimental studies of the deformation and breakup process,” International Journal of Multiphase Flow, vol. 21, no. 2, pp. 151–173, 1995.
[28]  A. J. Bilanin, “Scaling laws for testing airfoils under heavy rainfall,” Journal of Aircraft, vol. 24, no. 1, pp. 31–37, 1987.
[29]  W. C. Macklin and G. J. Metaxas, “Splashing of drops on liquid layers,” Journal of Applied Physics, vol. 47, no. 9, pp. 3963–3970, 1976.
[30]  R. E. Dirling, “A method for computing roughwall heat transfer rates on re-entry nosetips,” in Proceedings of the 8th AIAA Thermophysics Conference, Palm Springs, Calif, USA, 1973.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413