Bronchopulmonary dysplasia (BPD) is a major complication of preterm birth and has serious adverse long-term health consequences. The etiology of BPD is complex, multifactorial, and incompletely understood. Contributing factors include ventilator-induced lung injury, exposure to toxic oxygen levels, and infection. Several preventive and therapeutic strategies have been developed with variable success. These include lung protective ventilator strategies and pharmacological and nutritional interventions. These strategies target different components and stages of the disease process and they are commonly used in combination. The purpose of this review is to discuss the evidence for current pharmacological interventions and identify future therapeutic modalities that appear promising in the prevention and management of BPD. Continued improved understanding of BPD pathogenesis leads to opportunities for newer preventive approaches. These will need to be evaluated in the setting of current clinical practice in order to assess their efficacy. 1. Introduction Bronchopulmonary dysplasia (BPD) remains a major complication of prematurity resulting in significant mortality and morbidity despite advances in perinatal care and decline in mortality rates among very low birth weight (VLBW) infants [1]. Increased survival among VLBW infants contributes to the overall increase in the incidence of BPD and currently infants with birth weights <1250 grams account for 97% of cases of BPD [2]. The long-term health consequences of BPD include respiratory disease that can persist into adulthood and increased susceptibility to respiratory infections, asthma, pulmonary hypertension, repeated hospitalizations, neurodevelopmental impairment, and also increased mortality [3]. The etiology of BPD is multifactorial and includes exposure to mechanical ventilation, oxygen toxicity, infection, and inflammation that contribute to arrested alveolar development and associated abnormal vascular growth and damage to the distal airways of the highly vulnerable premature lung [4]. Multiple pharmacological and nonpharmacological approaches have been proposed for the prevention or treatment of preterm lung injury and BPD. While antenatal steroids, protective ventilation strategies, targeted oxygen saturation goals, caffeine therapy, vitamin A therapy, and optimization of nutrition have helped to modestly improve BPD outcomes, most current therapies are supportive [4, 5]. Many therapies remain controversial due to unacceptable side effects and others continue to need further study including
References
[1]
R. L. Goldenberg and A. H. Jobe, “Prospects for research in reproductive health and birth outcomes,” Journal of the American Medical Association, vol. 285, no. 5, pp. 633–639, 2001.
[2]
M. C. Walsh, S. Szefler, J. Davis et al., “Summary proceedings from the bronchopulmonary dysplasia group,” Pediatrics, vol. 117, no. 3, pp. S52–S56, 2006.
[3]
A. H. Jobe and E. Bancalari, “Bronchopulmonary dysplasia,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 7, pp. 1723–1729, 2001.
[4]
M. M. Laughon, P. Brian Smith, and C. Bose, “Prevention of bronchopulmonary dysplasia,” Seminars in Fetal and Neonatal Medicine, vol. 14, no. 6, pp. 374–382, 2009.
[5]
E. C. Eichenwald and A. R. Stark, “Management and outcomes of very low birth weight,” New England Journal of Medicine, vol. 358, no. 16, pp. 1662–1711, 2008.
[6]
D. J. Henderson-Smart and P. Steer, “Methylxanthine treatment for apnea in preterm infants,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD000140, 2001.
[7]
K. Barrington and N. Finer, “The natural history of the appearance of apnea of prematurity,” Pediatric Research, vol. 29, no. 4 I, pp. 372–375, 1991.
[8]
B. Schmidt, R. S. Roberts, P. Davis et al., “Caffeine therapy for apnea of prematurity,” New England Journal of Medicine, vol. 354, no. 20, pp. 2112–2121, 2006.
[9]
B. Schmidt, R. S. Roberts, P. Davis et al., “Long-term effects of caffeine therapy for apnea of prematurity,” New England Journal of Medicine, vol. 357, no. 19, pp. 1893–1902, 2007.
[10]
R. Baveja and H. Christou, “Pharmacological strategies in the prevention and management of bronchopulmonary dysplasia,” Seminars in Perinatology, vol. 30, no. 4, pp. 209–218, 2006.
[11]
E. R. Brown, A. Stark, and I. Sosenko, “Bronchopulmonary dysplasia: possible relationship to pulmonary edema,” Journal of Pediatrics, vol. 92, no. 6, pp. 982–984, 1978.
[12]
L. J. Van Marter, A. Leviton, E. N. Allred, M. Pagano, and K. C. K. Kuban, “Hydration during the first days of life and the risk of bronchopulmonary dysplasia in low birth weight infants,” Journal of Pediatrics, vol. 116, no. 6, pp. 942–949, 1990.
[13]
T. C. Carpenter, K. R. Stenmark, M. J. Boeckh, and J. E. Gern, “Predisposition of infants with chronic lung disease to respiratory syncytial virus-induced respiratory failure: a vascular hypothesis,” Pediatric Infectious Disease Journal, vol. 23, no. 1, supplement, pp. S33–S40, 2004.
[14]
L. P. Brion and R. A. Primhak, “Intravenous or enteral loop diuretics for preterm infants with (or developing) chronic lung disease,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD001453, 2000.
[15]
Z. D. Najak, E. M. Harris, A. Lazzara, and A. W. Pruitt, “Pulmonary effects of furosemide in preterm infants with lung disease,” Journal of Pediatrics, vol. 102, no. 5, pp. 758–763, 1983.
[16]
E. M. McCann, K. Lewis, and D. D. Deming, “Controlled trial of furosemide therapy in infants with chronic lung disease,” Journal of Pediatrics, vol. 106, no. 6, pp. 957–962, 1985.
[17]
M. G. Rush, B. Engelhardt, R. A. Parker, and T. A. Hazinski, “Double-blind placebo-controlled trial of alternate-day furosemide therapy in infants with chronic bronchopulmonary dysplasia,” Journal of Pediatrics, vol. 117, no. 1 I, pp. 112–118, 1990.
[18]
L. P. Brion, R. A. Primhak, and W. Yong, “Aerosolized diuretics for preterm infants with (or developing) chronic lung disease,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD001694, 2000.
[19]
L. P. Brion, R. A. Primhak, and I. Ambrosio-Perez, “Diuretics acting on the distal renal tubule for preterm infants with (or developing) chronic lung disease,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD001817, 2002.
[20]
L. C. Kao, D. J. Durand, M. R. C. McCrea, M. Birch, R. J. Powers, and B. G. Nickerson, “Randomized trial of long-term diuretic therapy for infants with oxygen-dependent bronchopulmonary dysplasia,” Journal of Pediatrics, vol. 124, no. 5, pp. 772–781, 1994.
[21]
S. G. Albersheim, A. J. Solimano, A. K. Sharma et al., “Randomized, double-blind, controlled trial of long-term diuretic therapy for bronchopulmonary dysplasia,” Journal of Pediatrics, vol. 115, no. 4, pp. 615–620, 1989.
[22]
D. J. Hoffman, J. S. Gerdes, and S. Abbasi, “Pulmonary function and electrolyte balance following spironolactone treatment in preterm infants with chronic lung disease: a double-blind, placebo-controlled, randomized trial,” Journal of Perinatology, vol. 20, no. 1, pp. 41–45, 2000.
[23]
G. Y. Ng, S. da, and A. Ohlsson, “Bronchodilators for the prevention and treatment of chronic lung disease in preterm infants,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD003214, 2001.
[24]
H. Kirpalani, G. Koren, B. Schmidt, Y. Tan, R. Santos, and S. Soldin, “Respiratory response and pharmacokinetics of intravenous salbutamol in infants with bronchopulmonary dysplasia,” Critical Care Medicine, vol. 18, no. 12, pp. 1374–1377, 1990.
[25]
M. Gappa, M. G?rtner, C. F. Poets, and H. Von Der Hardt, “Effects of salbutamol delivery from a metered dose inhaler versus jet nebulizer on dynamic lung mechanics in very preterm infants with chronic lung disease,” Pediatric Pulmonology, vol. 23, no. 6, pp. 442–448, 1997.
[26]
J. Pfenninger and C. Aebi, “Respiratory response to salbutamol (albuterol) in ventilator-dependent infants with chronic lung disease: pressurized aerosol delivery versus intravenous injection,” Intensive Care Medicine, vol. 19, no. 5, pp. 251–255, 1993.
[27]
E. K. Silverman, D. J. Kwiatkowski, J. S. Sylvia et al., “Family-based association analysis of β2-adrenergic receptor polymorphisms in the Childhood Asthma Management Program,” Journal of Allergy and Clinical Immunology, vol. 112, no. 5, pp. 870–876, 2003.
[28]
D. R. Taylor and M. A. Kennedy, “Beta-adrenergic receptor polymorphisms and drug responses in asthma,” Pharmacogenomics, vol. 3, no. 2, pp. 173–184, 2002.
[29]
D. K. C. Lee, C. E. Bates, and B. J. Lipworth, “Acute systemic effects of inhaled salbutamol in asthmatic subjects expressing common homozygous β2-adrenoceptor haplotypes at positions 16 and 27,” British Journal of Clinical Pharmacology, vol. 57, no. 1, pp. 100–104, 2004.
[30]
A. Denjean, J. Paris-Llado, V. Zupan et al., “Inhaled salbutamol and beclomethasone for preventing broncho-pulmonary dysplasia: a randomised double-blind study,” European Journal of Pediatrics, vol. 157, no. 11, pp. 926–931, 1998.
[31]
J. M. Davis, R. A. Sinkin, and J. V. Aranda, “Drug therapy for bronchopulmonary dysplasia,” Pediatric Pulmonology, vol. 8, no. 2, pp. 117–125, 1990.
[32]
J. M. Roberts, M. M. Jacobs, J. B. Cheng, P. J. Barnes, A. T. O'Brien, and P. J. Ballard, “Fetal pulmonary beta-adrenergic receptors: characterization in the human and in vitro modulation by glucocorticoids in the rabbit,” Pediatric Pulmonology, vol. 1, no. 3, supplement, pp. S69–S76, 1985.
[33]
C. H. Cole and J. M. Fiascone, “Strategies for prevention of neonatal chronic lung disease,” Seminars in Perinatology, vol. 24, no. 6, pp. 445–462, 2000.
[34]
E. Bancalari, “Corticosteroids and neonatal chronic lung disease,” European Journal of Pediatrics, vol. 157, supplement, no. 1, pp. S31–S37, 1998.
[35]
H. L. Halliday, R. A. Ehrenkranz, and L. W. Doyle, “Early postnatal (<96 hours) corticosteroids for preventing chronic lung disease in preterm infants,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD001146, 2003.
[36]
H. L. Halliday, R. A. Ehrenkranz, and L. W. Doyle, “Early (<8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD001146, 2010.
[37]
H. L. Halliday, R. A. Ehrenkranz, and L. W. Doyle, “Moderately early (7–14 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD001144, 2003.
[38]
H. L. Halliday, R. A. Ehrenkranz, and L. W. Doyle, “Delayed (>3 weeks) postnatal corticosteroids for chronic lung disease in preterm infants,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD001145, 2003.
[39]
L. W. Doyle, P. G. Davis, C. J. Morley et al., “Low-dose dexamethasone facilitates extubation among chronically ventilator-dependent infants: a multicenter, international, randomized, controlled trial,” Pediatrics, vol. 117, no. 1, pp. 75–83, 2006.
[40]
A. H. Jobe and R. F. Soll, “Choice and dose of corticosteroid for antenatal treatments,” American Journal of Obstetrics and Gynecology, vol. 190, no. 4, pp. 878–881, 2004.
[41]
O. Baud, V. Laudenbach, P. Evrard, and P. Gressens, “Neurotoxic effects of fluorinated glucocorticoid preparations on the developing mouse brain: role of preservatives,” Pediatric Research, vol. 50, no. 6, pp. 706–711, 2001.
[42]
K. L. Watterberg, J. S. Gerdes, C. H. Cole et al., “Prophylaxis of early adrenal insufficiency to prevent bronchopulmonary dysplasia: a multicenter trial,” Pediatrics, vol. 114, no. 6, pp. 1649–1657, 2004.
[43]
S. S. Shah, A. Ohlsson, H. Halliday, and V. S. Shah, “Inhaled versus systemic corticosteroids for the treatment of chronic lung disease in ventilated very low birth weight preterm infants,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD002057, 2003.
[44]
S. S. Shah, A. Ohlsson, H. Halliday, and V. S. Shah, “Inhaled versus systemic corticosteroids for preventing chronic lung disease in ventilated very low birth weight preterm neonates,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD002058, 2003.
[45]
P. Lister, R. Iles, B. Shaw, and F. Ducharme, “Inhaled steroids for neonatal chronic lung disease,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD002311, 2000.
[46]
H. L. Halliday, C. C. Patterson, and C. W. N. L. Halahakoon, “A multicenter, randomized open study of early corticosteroid treatment (OSECT) in preterm infants with respiratory illness: comparison of early and late treatment and of dexamethasone and inhaled budesonide,” Pediatrics, vol. 107, no. 2, pp. 232–240, 2001.
[47]
M. A. Dugas, D. Nguyen, L. Frenette et al., “Fluticasone inhalation in moderate cases of bronchopulmonary dysplasia,” Pediatrics, vol. 115, no. 5, pp. e566–e572, 2005.
[48]
S. J. Suchomski and J. J. Cummings, “A randomized trial of inhaled versus intravenous steroids in ventilator-dependent preterm infants,” Journal of Perinatology, vol. 22, no. 3, pp. 196–203, 2002.
[49]
R. M. Viscardi, J. D. Hasday, K. F. Gumpper, V. Taciak, A. B. Campbell, and T. W. Palmer, “Cromolyn sodium prophylaxis inhibits pulmonary proinflammatory cytokines in infants at high risk for bronchopulmonary dysplasia,” American Journal of Respiratory and Critical Care Medicine, vol. 156, no. 5, pp. 1523–1529, 1997.
[50]
K. L. Watterberg, S. Murphy, H. W. Kelly et al., “Failure of cromolyn sodium to reduce the incidence of bronchopulmonary dysplasia: a pilot study,” Pediatrics, vol. 91, no. 4, pp. 803–806, 1993.
[51]
K. A. Kennedy, “Epidemiology of acute and chronic lung injury,” Seminars in Perinatology, vol. 17, no. 4, pp. 247–252, 1993.
[52]
B. A. Darlow and P. J. Graham, “Vitamin A supplementation to prevent mortality and short and long-term morbidity in very low birthweight infants,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD000501, 2007.
[53]
J. E. Tyson, et al., “Vitamin A supplementation for extremely-low-birth-weight infants. National Institute of Child Health and Human Development Neonatal Research Network,” The New England Journal of Medicine, vol. 340, no. 25, pp. 1962–1968, 1999.
[54]
S. P. Wardle, A. Hughes, S. Chen, and N. J. Shaw, “Randomised controlled trial of oral vitamin a supplementation in preterm infants to prevent chronic lung disease,” Archives of Disease in Childhood, vol. 84, no. 1, pp. F9–F13, 2001.
[55]
N. Ambalavanan, J. E. Tyson, K. A. Kennedy et al., “Vitamin A supplementation for extremely low birth weight infants: outcome at 18 to 22 months,” Pediatrics, vol. 115, no. 3, pp. e249–e254, 2005.
[56]
M. Hallman, K. Bry, K. Hoppu, M. Lappi, and M. Pohjavuori, “Inositol supplementation in premature infants with respiratory distress syndrome,” New England Journal of Medicine, vol. 326, no. 19, pp. 1233–1239, 1992.
[57]
A. Howlett and A. Ohlsson, “Inositol for respiratory distress syndrome in preterm infants,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD000366, 2000.
[58]
L. B. Mamo, H. B. Suliman, B. L. Giles, R. L. Auten, C. A. Piantadosi, and E. Nozik-Grayck, “Discordant extracellular superoxide dismutase expression and activity in neonatal hyperoxic lung,” American Journal of Respiratory and Critical Care Medicine, vol. 170, no. 3, pp. 313–318, 2004.
[59]
J. M. Davis, W. N. Rosenfeld, R. J. Sanders, and A. Gonenne, “Prophylactic effects of recombinant human superoxide dismutase in neonatal lung injury,” Journal of Applied Physiology, vol. 74, no. 5, pp. 2234–2241, 1993.
[60]
R. V. Padmanabhan, R. Gudapaty, and I. E. Liener, “Protection against pulmonary oxygen toxicity in rats by the intratracheal administration of liposome-encapsulated superoxide dismutase or catalase,” American Review of Respiratory Disease, vol. 132, no. 1, pp. 164–167, 1985.
[61]
J. F. Turrens, J. D. Crapo, and B. A. Freeman, “Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase,” Journal of Clinical Investigation, vol. 73, no. 1, pp. 87–95, 1984.
[62]
J. M. Davis, R. B. Parad, T. Michele, E. Allred, A. Price, and W. Rosenfeld, “Pulmonary outcome at 1 year corrected age in premature infants treated at birth with recombinant human CuZn superoxide dismutase,” Pediatrics, vol. 111, no. 3, pp. 469–476, 2003.
[63]
A. Jain, D. C. Madsen, P. A. M. Auld et al., “L-2-oxothiazolidine-4-carboxylate, a cysteine precursor, stimulates growth and normalizes tissue glutathione concentrations in rats fed a sulfur amino acid-deficient diet,” Journal of Nutrition, vol. 125, no. 4, pp. 851–856, 1995.
[64]
T. Ahola, R. Lapatto, K. O. Raivio et al., “N-acetylcysteine does not prevent bronchopulmonary dysplasia in immature infants: a randomized controlled trial,” Journal of Pediatrics, vol. 143, no. 6, pp. 713–719, 2003.
[65]
K. Sandberg, V. Fellman, L. Stigson, K. Thiringer, and O. Hjalmarson, “N-acetylcysteine administration during the first week of life does not improve lung function in extremely low birth weight infants,” Biology of the Neonate, vol. 86, no. 4, pp. 275–279, 2004.
[66]
J. L. Watts, R. Milner, A. Zipursky et al., “Failure of supplementation with vitamin E to prevent bronchopulmonary dysplasia in infants infants less than 1,500 g birth weight,” European Respiratory Journal, vol. 4, no. 2, pp. 188–190, 1991.
[67]
T. M. Berger, B. Frei, N. Rifai et al., “Early high dose antioxidant vitamins do not prevent bronchopulmonary dysplasia in premature baboons exposed to prolonged hyperoxia: a pilot study,” Pediatric Research, vol. 43, no. 6, pp. 719–726, 1998.
[68]
P. K. Donohue, M. M. Gilmore, E. Cristofalo et al., “Inhaled nitric oxide in preterm infants: a systematic review,” Pediatrics, vol. 127, no. 2, pp. e414–e422, 2011.
[69]
S. H. Abman, J. P. Kinsella, M. S. Schaffer, and R. B. Wilkening, “Inhaled nitric oxide in the management of a premature newborn with severe respiratory distress and pulmonary hypertension,” Pediatrics, vol. 92, no. 4, pp. 606–609, 1993.
[70]
J. P. Kinsella, D. D. Ivy, and S. H. Abman, “Inhaled nitric oxide improves gas exchange and lowers pulmonary vascular resistance in severe experimental hyaline membrane disease,” Pediatric Research, vol. 36, no. 3, pp. 402–408, 1994.
[71]
D. C. McCurnin, R. A. Pierce, Y. C. Ling et al., “Inhaled NO improves early pulmonary function and modifies lung growth and elastin deposition in a baboon model of neonatal chronic lung disease,” American Journal of Physiology - Lung Cellular and Molecular Physiology, vol. 288, no. 3, pp. L450–L459, 2005.
[72]
B. A. Banks, I. Seri, H. Ischiropoulos, J. Merrill, J. Rychik, and R. A. Ballard, “Changes in oxygenation with inhaled nitric oxide in severe bronchopulmonary dysplasia,” Pediatrics, vol. 103, no. 3, pp. 610–618, 1999.
[73]
C. F. Potter, I. A. Dreshaj, M. A. Haxhiu, E. K. Stork, R. L. Chatburn, and R. J. Martin, “Effect of exogenous and endogenous nitric oxide on the airway and tissue components of lung resistance in the newborn piglet,” Pediatric Research, vol. 41, no. 6, pp. 886–891, 1997.
[74]
R. A. Ballard, W. E. Truog, A. Cnaan et al., “Inhaled nitric oxide in preterm infants undergoing mechanical ventilation,” New England Journal of Medicine, vol. 355, no. 4, pp. 343–353, 2006.
[75]
J. P. Kinsella, G. R. Cutter, W. F. Walsh et al., “Early inhaled nitric oxide therapy in premature newborns with respiratory failure,” New England Journal of Medicine, vol. 355, no. 4, pp. 354–364, 2006.
[76]
M. D. Schreiber, K. Gin-Mestan, J. D. Marks, D. Huo, G. Lee, and P. Srisuparp, “Inhaled nitric oxide in premature infants with the respiratory distress syndrome,” New England Journal of Medicine, vol. 349, no. 22, pp. 2099–2107, 2003.
[77]
N. V. Subhedar, S. W. Ryan, and N. J. Shaw, “Open randomised controlled trial of inhaled nitric oxide and early dexamethasone in high risk preterm infants,” Archives of Disease in Childhood, vol. 77, no. 3, pp. F185–F190, 1997.
[78]
J. C. Mercier, H. Hummler, X. Durrmeyer et al., “Inhaled nitric oxide for prevention of bronchopulmonary dysplasia in premature babies (EUNO): a randomised controlled trial,” The Lancet, vol. 376, no. 9738, pp. 346–354, 2010.
[79]
K. P. Van Meurs, S. R. Hintz, R. A. Ehrenkranz et al., “Inhaled nitric oxide in infants >1500 g and <34 weeks gestation with severe respiratory failure,” Journal of Perinatology, vol. 27, no. 6, pp. 347–352, 2007.
[80]
L. M. Askie, R. A. Ballard, G. R. Cutter et al., “Inhaled nitric oxide in preterm infants: an individual-patient data meta-analysis of randomized trials,” Pediatrics, vol. 128, no. 4, pp. 729–739, 2011.
[81]
F. S. Cole, C. Alleyne, J. D.E. Barks et al., “NIH consensus development conference statement: inhaled nitric-oxide therapy for premature infants,” Pediatrics, vol. 127, no. 2, pp. 363–369, 2011.
[82]
D. G. Phinney and I. Isakova, “Plasticity and therapeutic potential of mesenchymal stem cells in the nervous system,” Current Pharmaceutical Design, vol. 11, no. 10, pp. 1255–1265, 2005.
[83]
R. V. Shah and R. N. Mitchell, “The role of stem cells in the response to myocardial and vascular wall injury,” Cardiovascular Pathology, vol. 14, no. 5, pp. 225–231, 2005.
[84]
M. Aslam, R. Baveja, O. D. Liang et al., “Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease,” American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 11, pp. 1122–1130, 2009.
[85]
T. Van Haaften, R. Byrne, S. Bonnet et al., “Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats,” American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 11, pp. 1131–1142, 2009.
[86]
S. H. Abman and M. A. Matthay, “Mesenchymal stem cells for the prevention of bronchopulmonary dysplasia: delivering the secretome,” American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 11, pp. 1039–1041, 2009.
[87]
W. Thomas and C. P. Speer, “Nonventilatory strategies for prevention and treatment of bronchopulmonary dysplasia—what is the evidence?” Neonatology, vol. 94, no. 3, pp. 150–159, 2008.
[88]
M. M. Laughon, J. C. Langer, C. L. Bose et al., “Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 12, pp. 1715–1722, 2011.