全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Endoplasmic Reticulum Is at the Crossroads of Autophagy, Inflammation, and Apoptosis Signaling Pathways and Participates in the Pathogenesis of Diabetes Mellitus

DOI: 10.1155/2013/193461

Full-Text   Cite this paper   Add to My Lib

Abstract:

Diabetes mellitus (DM) is a chronic metabolic disease, and its incidence is growing worldwide. The endoplasmic reticulum (ER) is a central component of cellular functions and is involved in protein folding and trafficking, lipid synthesis, and maintenance of calcium homeostasis. The ER is also a sensor of both intra- and extracellular stress and thus participates in monitoring and maintaining cellular homeostasis. Therefore, the ER is one site of interaction between environmental signals and a cell’s biological function. The ER is tightly linked to autophagy, inflammation, and apoptosis, and recent evidence suggests that these processes are related to the pathogenesis of DM and its complications. Thus, the ER has been considered an intersection integrating multiple stress responses and playing an important role in metabolism-related diseases including DM. Here, we review the relationship between the ER and autophagy, inflammation, and apoptosis in DM to better understand the molecular mechanisms of this disease. 1. Introduction Diabetes mellitus (DM) is a chronic metabolic disease, and its incidence is growing worldwide. Long-term hyperglycemia is the fundamental factor that promotes vascular lesions and dysfunction, leading to a variety of complications of DM [1]. Diabetic complications, such as neuropathy vasculopathy, are the main cause of death or disablement in DM patients [2]. The main purpose of clinical treatments for DM is to control blood glucose and consequently inhibit or alleviate the initiation and progression of complications. However, the control of blood glucose is not easy to achieve [3]. Therefore, a better understanding of the pathogenesis of DM is very important for the development of new treatment strategies. The endoplasmic reticulum (ER) is an important membranous organelle; its functions include folding and trafficking of protein, lipid synthesis, maintaining calcium homeostasis, and participating in a number of crucial cellular functions [4]. The ER can monitor and maintain cellular homeostasis by acting as a sensor of various changes (stresses) in the intra- and extracellular environment [5]. The ER may therefore provide a platform for interactions between environmental signals and basic cellular biological functions and act as an intersection to integrate multiple stress responses. The interruption of cellular homeostasis can lead to a gradual reduction of organ function, and in turn decreased ability to respond to physiological stress. Recently, a growing body of research has suggested that the ER is involved in the

References

[1]  M. Kitada, S. Kume, A. Takeda-Watanabe, et al., “Sirtuins and renal diseases: relationship with aging and diabetic nephropathy,” Clinical Science, vol. 124, no. 3, pp. 153–164, 2013.
[2]  E. Mannucci, M. Monami, C. Lamanna, et al., “Post-prandial glucose and diabetic complications: systematic review of observational studies,” Acta Diabetologica, vol. 49, no. 4, pp. 307–314, 2012.
[3]  H. Brody, “Diabetes,” Nature, vol. 485, no. 7398, p. S1, 2012.
[4]  M. H. Smith, H. L. Ploegh, and J. S. Weissman, “Road to ruin: targeting proteins for degradation in the endoplasmic reticulum,” Science, vol. 334, no. 6059, pp. 1086–1090, 2011.
[5]  G. S. Hotamisligil, “Endoplasmic reticulum stress and the inflammatory basis of metabolic disease,” Cell, vol. 140, no. 6, pp. 900–917, 2010.
[6]  M. Balasubramanyam, L. P. Singh, and S. Rangasamy, “Molecular intricacies and the role of ER stress in diabetes,” Experimental Diabetes Research, vol. 2012, Article ID 958169, 2 pages, 2012.
[7]  B. O'Sullivan-Murphy and F. Urano, “ER stress as a trigger for beta-cell dysfunction and autoimmunity in type 1 diabetes,” Diabetes, vol. 61, no. 4, pp. 780–781, 2012.
[8]  D. Ron and P. Walter, “Signal integration in the endoplasmic reticulum unfolded protein response,” Nature Reviews Molecular Cell Biology, vol. 8, no. 7, pp. 519–529, 2007.
[9]  D. R. Beriault and G. H. Werstuck, “The role of glucosamine-induced ER stress in diabetic atherogenesis,” Experimental Diabetes Research, vol. 2012, Article ID 187018, 11 pages, 2012.
[10]  A. Bertolotti, Y. Zhang, L. M. Hendershot, H. P. Harding, and D. Ron, “Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response,” Nature Cell Biology, vol. 2, no. 6, pp. 326–332, 2000.
[11]  X. Chen, J. Shen, and R. Prywes, “The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the er to the Golgi,” Journal of Biological Chemistry, vol. 277, no. 15, pp. 13045–13052, 2002.
[12]  S. Nadanaka, T. Okada, H. Yoshida, and K. Mori, “Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress,” Molecular and Cellular Biology, vol. 27, no. 3, pp. 1027–1043, 2007.
[13]  R. Y. Hampton, “ER stress response: getting the UPR hand on misfolded proteins,” Current Biology, vol. 10, no. 14, pp. R518–R521, 2000.
[14]  G. Jing, J. J. Wang, and S. X. Zhang, “ER stress and apoptosis: a new mechanism for retinal cell death,” Experimental Diabetes Research, vol. 2012, Article ID 589589, 11 pages, 2012.
[15]  A. Kaser, A. H. Lee, A. Franke et al., “XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease,” Cell, vol. 134, no. 5, pp. 743–756, 2008.
[16]  T. Rzymski, A. Petry, D. Kracun, et al., “The unfolded protein response controls induction and activation of ADAM17/TACE by severe hypoxia and ER stress,” Oncogene, vol. 31, no. 31, pp. 3621–3634, 2012.
[17]  K. Zhang, “Integration of ER stress, oxidative stress and the inflammatory response in health and disease,” International Journal of Clinical and Experimental Medicine, vol. 3, no. 1, pp. 33–40, 2010.
[18]  T. Yorimitsu and D. J. Klionsky, “Autophagy: molecular machinery for self-eating,” Cell Death and Differentiation, vol. 12, no. 2, pp. 1542–1552, 2005.
[19]  N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, “Autophagy fights disease through cellular self-digestion,” Nature, vol. 451, no. 7182, pp. 1069–1075, 2008.
[20]  G. Kroemer, G. Mari?o, and B. Levine, “Autophagy and the integrated stress response,” Molecular Cell, vol. 40, no. 2, pp. 280–293, 2010.
[21]  J. J. Yin, Y. B. Li, Y. Wang, et al., “The role of autophagy in endoplasmic reticulum stress-induced pancreatic beta cell death,” Autophagy, vol. 8, no. 2, pp. 158–164, 2012.
[22]  T. Yorimitsu and D. J. Klionsky, “Eating the endoplasmic reticulum: quality control by autophagy,” Trends in Cell Biology, vol. 17, no. 6, pp. 279–285, 2007.
[23]  D. C. Rubinsztein, “The roles of intracellular protein-degradation pathways in neurodegeneration,” Nature, vol. 443, no. 7113, pp. 780–786, 2006.
[24]  Y. Nishida, S. Arakawa, K. Fujitani et al., “Discovery of Atg5/Atg7-independent alternative macroautophagy,” Nature, vol. 461, no. 7264, pp. 654–658, 2009.
[25]  Y. Tanaka, S. Kume, M. Kitada, et al., “Autophagy as a therapeutic target in diabetic nephropathy,” Experimental Diabetes Research, vol. 2012, Article ID 628978, 12 pages, 2012.
[26]  C. Ebato, T. Uchida, M. Arakawa et al., “Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet,” Cell Metabolism, vol. 8, no. 4, pp. 325–332, 2008.
[27]  H. S. Jung, K. W. Chung, J. Won Kim et al., “Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia,” Cell Metabolism, vol. 8, no. 4, pp. 318–324, 2008.
[28]  K. Okada, T. Yanagawa, E. Warabi et al., “The α-glucosidase inhibitor acarbose prevents obesity and simple steatosis in sequestosome 1/A170/p62 deficient mice,” Hepatology Research, vol. 39, no. 5, pp. 490–500, 2009.
[29]  T. Geetha, N. Vishwaprakash, M. Sycheva, et al., “Sequestosome 1/p62: across diseases,” Biomarkers, vol. 17, no. 2, pp. 99–103, 2012.
[30]  P. E. Rautou, A. Mansouri, D. Lebrec, F. Durand, D. Valla, and R. Moreau, “Autophagy in liver diseases,” Journal of Hepatology, vol. 53, no. 6, pp. 1123–1134, 2010.
[31]  H. Y. Chung, B. Sung, K. J. Jung, Y. Zou, and B. P. Yu, “The molecular inflammatory process in aging,” Antioxidants and Redox Signaling, vol. 8, no. 3-4, pp. 572–581, 2006.
[32]  J. F. Navarro-González, C. Mora-Fernández, M. M. De Fuentes, and J. García-Pérez, “Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy,” Nature Reviews Nephrology, vol. 7, no. 6, pp. 327–340, 2011.
[33]  P. Hu, Z. Han, A. D. Couvillon, R. J. Kaufman, and J. H. Exton, “Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression,” Molecular and Cellular Biology, vol. 26, no. 8, pp. 3071–3084, 2006.
[34]  X. D. Liu, S. Ko, Y. Xu, et al., “Transient aggregation of ubiquitinated proteins is a cytosolic unfolded protein response to inflammation and endoplasmic reticulum stress,” The Journal of Biological Chemistry, vol. 287, no. 23, pp. 19687–19698, 2012.
[35]  G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993.
[36]  J. Hirosumi, G. Tuncman, L. Chang et al., “A central, role for JNK in obesity and insulin resistance,” Nature, vol. 420, no. 6913, pp. 333–336, 2002.
[37]  G. Tuncman, J. Hirosumi, G. Solinas, L. Chang, M. Karin, and G. S. Hotamisligil, “Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 28, pp. 10741–10746, 2006.
[38]  S. N. Vallerie, M. Furuhashi, R. Fucho, and G. S. Hotamisligil, “A predominant role for parenchymal c-Jun amino terminal kinase (JNK) in the regulation of systemic insulin sensitivity,” PLoS ONE, vol. 3, no. 9, article e3151, 2008.
[39]  S. E. Shoelson, J. Lee, and A. B. Goldfine, “Inflammation and insulin resistance,” Journal of Clinical Investigation, vol. 116, no. 7, pp. 1793–1801, 2006.
[40]  H. Yamazaki, N. Hiramatsu, K. Hayakawa et al., “Activation of the Akt-NF-κB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response,” Journal of Immunology, vol. 183, no. 2, pp. 1480–1487, 2009.
[41]  I. Ben Mosbah, I. Alfany-Fernández, C. Martel et al., “Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia-reperfusion,” Cell Death and Disease, vol. 1, no. 7, article no. e52, 2010.
[42]  G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006.
[43]  V. I. Alexaki, G. Notas, V. Pelekanou et al., “Adipocytes as immune cells: differential expression of TWEAK, BAFF, and APRIL and their receptors (Fn14, BAFF-R, TACI, and BCMA) at different stages of normal and pathological adipose tissue development,” Journal of Immunology, vol. 183, no. 9, pp. 5948–5956, 2009.
[44]  M. Feuerer, Y. Shen, D. R. Littman, C. Benoist, and D. Mathis, “How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets,” Immunity, vol. 31, no. 4, pp. 654–664, 2009.
[45]  N. Kawasaki, R. Asada, A. Saito, et al., “Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue,” Scientific Reports, vol. 2, article 799, 2012.
[46]  J. Zhong, X. Rao, J. F. Xu, et al., “The role of endoplasmic reticulum stress in autoimmune-mediated beta-cell destruction in type 1 diabetes,” Experimental Diabetes Research, vol. 2012, Article ID 238980, 12 pages, 2012.
[47]  I. Mothe-Satney, C. Filloux, H. Amghar, et al., “Adipocytes secrete leukotrienes: contribution to obesity-associated inflammation and insulin resistance in mice,” Diabetes, vol. 61, no. 9, pp. 2311–2319, 2012.
[48]  S. Gupta, D. E. Read, A. Deepti, et al., “Perk-dependent repression of miR-106b-25 cluster is required for ER stress-induced apoptosis,” Cell Death and Disease, vol. 3, article e333, 2012.
[49]  R. V. Rao, H. M. Ellerby, and D. E. Bredesen, “Coupling endoplasmic reticulum stress to the cell death program,” Cell Death and Differentiation, vol. 11, no. 4, pp. 372–380, 2004.
[50]  M. Kaneko, Y. Niinuma, and Y. Nomura, “Activation signal of nuclear factor-κB in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2,” Biological and Pharmaceutical Bulletin, vol. 26, no. 7, pp. 931–935, 2003.
[51]  J. H. Lin, H. Li, D. Yasumura et al., “IRE1 signaling affects cell fate during the unfolded protein response,” Science, vol. 318, no. 5852, pp. 944–949, 2007.
[52]  C. Hetz, P. Bernasconi, J. Fisher et al., “Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α,” Science, vol. 312, no. 5773, pp. 572–576, 2006.
[53]  D. Han, A. G. Lerner, L. Vande Walle et al., “IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates,” Cell, vol. 138, no. 3, pp. 562–575, 2009.
[54]  U. ?zcan, Q. Cao, E. Yilmaz et al., “Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes,” Science, vol. 306, no. 5695, pp. 457–461, 2004.
[55]  K. Ozawa, M. Miyazaki, M. Matsuhisa et al., “The endoplasmic reticuluin chaperone improves insulin resistance in type 2 diabetes,” Diabetes, vol. 54, no. 3, pp. 657–663, 2005.
[56]  B. Basha, S. M. Samuel, C. R. Triggle, et al., “Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress?” Experimental Diabetes Research, vol. 2012, Article ID 481840, 14 pages, 2012.
[57]  Y. Nakatani, H. Kaneto, D. Kawamori et al., “Involvement of endoplasmic reticulum stress in insulin resistance and diabetes,” Journal of Biological Chemistry, vol. 280, no. 1, pp. 847–851, 2005.
[58]  H. L. Kammoun, H. Chabanon, I. Hainault et al., “GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice,” Journal of Clinical Investigation, vol. 119, no. 5, pp. 1201–1215, 2009.
[59]  D. Scheuner, B. Song, E. McEwen et al., “Translational control is required for the unfolded protein response and in vivo glucose homeostasis,” Molecular Cell, vol. 7, no. 6, pp. 1165–1176, 2001.
[60]  H. P. Harding, H. Zeng, Y. Zhang et al., “Diabetes mellitus and exocrine pancreatic dysfunction in Perk-/- mice reveals a role for translational control in secretory cell survival,” Molecular Cell, vol. 7, no. 6, pp. 1153–1163, 2001.
[61]  S. H. Back, D. Scheuner, J. Han et al., “Translation attenuation through eIF2α phosphorylation prevents oxidative stress and maintains the differentiated state in β cells,” Cell Metabolism, vol. 10, no. 1, pp. 13–26, 2009.
[62]  W. C. Ladiges, S. E. Knoblaugh, J. F. Morton et al., “Pancreatic β-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK,” Diabetes, vol. 54, no. 4, pp. 1074–1081, 2005.
[63]  P. Zhang, B. McGrath, S. Li et al., “The PERK eukaryotic initiation factor 2α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas,” Molecular and Cellular Biology, vol. 22, no. 11, pp. 3864–3874, 2002.
[64]  S. G. Fonseca, M. Fukuma, K. L. Lipson et al., “WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pacreatic β-cells,” Journal of Biological Chemistry, vol. 280, no. 47, pp. 39609–39615, 2005.
[65]  U. ?zcan, E. Yilmaz, L. ?zcan et al., “Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes,” Science, vol. 313, no. 5790, pp. 1137–1140, 2006.
[66]  T. Ota, C. Gayet, and H. N. Ginsberg, “Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents,” Journal of Clinical Investigation, vol. 118, no. 1, pp. 316–332, 2008.
[67]  M. Boyce, K. F. Bryant, C. Jousse et al., “A selective inhibitor of elF2α dephosphorylation protects cells from ER stress,” Science, vol. 307, no. 5711, pp. 935–939, 2005.
[68]  K. L. Lipson, S. G. Fonseca, S. Ishigaki et al., “Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1,” Cell Metabolism, vol. 4, no. 3, pp. 245–254, 2006.
[69]  C. K. Tsang, H. Qi, L. F. Liu, and X. F. S. Zheng, “Targeting mammalian target of rapamycin (mTOR) for health and diseases,” Drug Discovery Today, vol. 12, no. 3-4, pp. 112–124, 2007.
[70]  B. B. Zhang, G. Zhou, and C. Li, “AMPK: an emerging drug target for diabetes and the metabolic syndrome,” Cell Metabolism, vol. 9, no. 5, pp. 407–416, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413