全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Generic mean curvature flow I; generic singularities

Full-Text   Cite this paper   Add to My Lib

Abstract:

It has long been conjectured that starting at a generic smooth closed embedded surface in R^3, the mean curvature flow remains smooth until it arrives at a singularity in a neighborhood of which the flow looks like concentric spheres or cylinders. That is, the only singularities of a generic flow are spherical or cylindrical. We will address this conjecture here and in a sequel. The higher dimensional case will be addressed elsewhere. The key in showing this conjecture is to show that shrinking spheres, cylinders and planes are the only stable self-shrinkers under the mean curvature flow. We prove this here in all dimensions. An easy consequence of this is that every other singularity than spheres and cylinders can be perturbed away.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133