全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

土壤-微生物-植物系统中矿物风化与元素循环

, PP. 1107-1116

Keywords: 土壤,植物,微生物地球生物学

Full-Text   Cite this paper   Add to My Lib

Abstract:

?土壤是地球关键带的重要组成部分,土壤-植物系统是连接岩石圈、生物圈、大气圈和水圈的纽带.土壤作为地球上生物多样性最丰富的生境之一,在地球表层生物地球化学过程中担负重要的作用.本文主要从地球生物学的角度来探讨土壤生物在地球表层(风化壳)岩石矿物风化、物质转化与运输中的作用及其相关机制,包括土壤微生物对岩石矿物的风化,以及土壤-根系的相互作用和土壤-微生物-根系相互作用对岩石矿物风化的影响.

References

[1]  王兆苏, 王新军, 陈学萍, 等, 2011. 微生物铁氧化作用对砷迁移转化的影响. 环境科学学报. 31: 328-333
[2]  赵其国, 等. 2002. 红壤物质循环及其调控. 北京: 科学出版社
[3]  Abiven S, Menasseri S, Angers D A, et al. 2008. A model to predict soil aggregate stability dynamics following organic residue incorporation under field conditions. Soil Sci Soc Am J, 72: 119-125
[4]  Arocena J M, G?ttlein A, Raidl S. 2004. Spatial changes of soil solution and mineral composition in the rhizosphere of Norway-spruce seedlings colonized by Piloderma croceum. J Plant Nutr Soil Sc, 167: 479-486
[5]  Arocena J M, Velde B, Robertson S J. 2012. Weathering of biotite in the presence of arbuscular mycorrhizae in selected agricultural crops. Appl Clay Sci, 64: 12-17
[6]  Bago B, Vierheilig H, Piché Y, et al. 1996. Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytol, 133: 273-280
[7]  Barker W W, Welch S A, Chu S, et al. 1998. Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Miner, 83: 1551-1563
[8]  Baxter J W, Dighton J. 2001. Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host-symbiont culture conditions. New Phytol, 152: 139-149
[9]  Bennett P C, Rogers J R, Choi W J, et al. 2001. Silicates, silicate weathering, and microbial ecology. Geomicrobiol J, 18: 3-19
[10]  Borch T, Kretzschmar R, Kappler A, et al. 2010. Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol, 44: 15-23
[11]  Bronick C J, Lal R. 2005. Soil structure and management: A review. Geoderma, 124: 3-22
[12]  Casarin V, Plassard C, Souche G, et al. 2003. Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil. Agronomie, 23: 461-469
[13]  Chardot-Jacques V, Calvaruso C, Simon B, et al. 2013. Chrysotile dissolution in the rhizosphere of the nickel hyperaccumulator Leptoplax emarginata. Environ Sci Technol, 47: 2612-2620
[14]  Chen X P, Zhu Y G, Hong M N, et al. 2008. Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants. Environ Toxicol Chem, 27: 881-887
[15]  Christophe C, Marie-Pierre T, Pascale F K, et al. 2013. Increase of apatite dissolution rate by Scots pine roots associated or not with Burkholderia glathei PML1(12)Rp in open-system flow microcosms. Geochim Cosmochim Acta, 106: 287-306
[16]  Czarnes S, Hallett P D, Bengough A G, et al. 2000. Root- and microbial-derived mucilages affect soil structure and water transport. Eur J Soil Sci, 51: 435-443
[17]  Detwiler R P. 1986. Land use change and the global carbon cycle: The role of tropical soils. Biogeochemistry, 2: 321-323
[18]  Wright S F, Upadhyaya A. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci, 161: 575-586
[19]  Xiao B, Lian B, Sun L, et al. 2012. Gene transcription response to weathering of K-bearing minerals by Aspergillus fumigates. Chem Geol, 306-307: 1-9
[20]  Young I M, Crawford J W. 2004. Interactions and self-organization in the soil-microbe complex. Science, 304: 1634-1637
[21]  Díaz-Zorita M, Perfect E, Grove J H. 2002. Disruptive methods for assessing soil structure. Soil Tillage Res, 64: 3-22
[22]  Dickie I A, Xu B, Koide R T. 2002. Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol, 156: 527-535
[23]  Dinkelaker B, Romheld V Marschner H. 1989. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ, 12: 285-292
[24]  Ebelmen J J. 1845. Sur les produits de la décomposition des espèces minérales de la famille des silicates. Annales des Mines, 7, 3-66
[25]  Finlay R, Wallander H, Smits M M, et al. 2009. The role of fungi in biogenic weathering in boreal forest soils. Fungal Biol Rev, 23: 101-106
[26]  Gardner W K, Barber D, Parbery D G. 1983. The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil, 70: 107-124
[27]  Glowa K R, Arocena J M, Masssicotte H B. 2003. Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiol J, 20: 99-111
[28]  Hoffland E, Giesler R, Jongmans A G, et al. 2003. Feldspar tunneling by fungi along natural productivity gradients. Ecosystems, 6: 739-746
[29]  Hohmann C, Winkler E, Morin G, et al. 2009. Anaerobic Fe(II)-oxidizing bacteria show as resistance and immobilize as during Fe(III) mineral precipitation. Environ Sci Technol, 44: 94-101
[30]  Houben D, Sonnet P. 2012. Zinc mineral weathering as affected by plant roots. Appl Geochem, 27: 1587-1592
[31]  Huang H, Zhu Y G, Chen Z, et al. 2012. Arsenic mobilization and speciation during iron plaque decomposition in a paddy soil. J Soils Sediment, 12: 402-410
[32]  Johansen A, Jakobsen I, Jensen E S. 1993. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol Fert Soils, 16: 66-70
[33]  Johnson J F, Vance C P, Allan D L. 1996. Phosphorus deficiency in Lupinus albus (Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase). Plant Physiol, 112: 31-41
[34]  Jongmans A G, van Breemen N, Lundstr?m U, et al. 1997. Rock-eating fungi. Nature, 389: 682-683
[35]  Kinraide T B. 1991. Identity of the rhizotoxic aluminum species. Plant Soil, 134: 167-178
[36]  Kleber M, Sollins P, Sutton R. 2007. A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry, 85: 9-24
[37]  Kolo K, Claeys Ph. 2005. In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater. Biogeosciences, 2: 277-293
[38]  Lack J G, Chaudhuri S K, Chakraborty R, et al. 2002. Anaerobic biooxidation of Fe(II) by Dechlorosoma suillum. Microbial Ecol, 43: 424-431
[39]  Lake B A, Coolidge K M, Norton S A, et al. 2007. Factors contributing to the internal loading of phosphorus from anoxic sediments in six Maine, USA, lakes. Sci Total Environ, 373: 534-541
[40]  Liu D, Dong H, Bishop M E, et al. 2011. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochim Cosmochim Acta, 75: 1057-1071
[41]  Liu D, Dong H, Bishop M, et al. 2012. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium. Geobiology, 10: 150-162
[42]  Lovley D R. 2006. Bug juice: Harvesting electricity with microorganisms. Nat Rev Microbiol, 4: 497-508
[43]  Malvankar N S, Lovley D R. 2012. Microbial nanowires: A new paradigm for biological electron transfer and bioelectronics. Chem Sus Chem, 5: 1039-1046
[44]  Moyersoen B. 2006. Pakaraimaea dipterocarpacea is ectomycorrhizal, indicating an ancient Gondwanaland origin for the ectomycorrhizal habit in Dipterocarpaceae. New Phytol, 172: 753-762
[45]  Ochs M. 1996. Influence of humified and non-humified natural organic compounds on mineral dissolution. Chem Geol, 132: 119-124
[46]  Paris F, Botton B, Lapeyrie F. 1996. In vitro weathering of phlogopite by ectomycorrhizal fungi 2. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+. Plant Soil, 179: 141-150
[47]  Peng X, Hallett P D, Zhang B, et al. 2011. Physical response of rigid and non-rigid soils to analogues of biological exudates. Eur J Soil Sci, 62: 676-684
[48]  Plaza-Bonilla D, Alvaro-Fuentes J, Cantero-Martinez C. 2013. Soil aggregate stability as affected by fertilization type under semiarid no-tillage conditions. Soil Sci Soc Am J, 77: 284-292
[49]  Remy W, Taylor T N, Hass H, et al. 1994. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA, 91: 11841-11843
[50]  Richmond W R, Loan M, Morton J, et al. 2004. Arsenic removal from aqueous solution via ferrihydrite crystallization control. Environ Sci Technol, 38: 2368-2372
[51]  Rillig M, Mummey D L. 2006. Mycorrhizas and soil structure. New Phytol, 171: 41-53
[52]  Rosling A, Landeweert R, Lindahl B D, et al. 2003. Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol, 159: 775-783
[53]  Rosling A, Lindahl B D, Taylor A F S, et al. 2004. Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiol Ecol, 47: 31-37
[54]  Salehi M H, Tahamtani L. 2012. Magnesium uptake and palygorskite transformation abilities of wheat and oat. Pedosphere, 22: 834-841
[55]  Sanz-Montero M E, Rodríguez-Aranda J P. 2012. Endomycorrhizae in Miocene paleosols: Implications in biotite weathering and accumulation of dolomite in plant roots (SW Madrid Basin, Spain). Paleogeogr Paleoclimatol Paleoecol, 333-334: 121-130
[56]  Six J, Bossuyt H, Degryze S, et al. 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res, 79: 7-31
[57]  Smith S E, Read D J. 2008. Mycorrhizal Symbiosis. 3rd ed. Salt Lake City: Academic Press
[58]  Smits M M, Bonneville S, Benning L G, et al. 2012. Plant-driven weathering of apatite—The role of an ectomycorrhizal fungus. Geobiology, 10: 445-456
[59]  Smits M M. 2005. Ectomycorrhizal fungi and biogeochemical cycles of boreal forests. PhD Thesis. Wageningen: Wageningen University
[60]  Sverdrup H, Hagen-Thorn A, Holmqvist J, et al. 2002. Biogeochemical processes and mechanisms. In: Sverdrup H, Stjernquist I, eds. Developing Principles and Models for Sustainable Forestry in Sweden. Dordrecht: Kluwer. 91-196
[61]  Taylor L L, Leake J R, Quirk J, et al. 2009. Biological weathering and the long-term carbon cycle: Integrating mycorrhizal evolution and function into the current paradigm. Geobiology, 7: 171-219
[62]  Tisdall J M, Oades J M. 1982. Organic matter and water stable aggregates in soils. J Soil Sci, 33: 141-163
[63]  Uroz S, Calvaruso C, Turpault M P, et al. 2009. Mineral weathering by bacteria: Ecology, actors and mechanisms. Trends Microbial, 17: 378-387
[64]  Van Breemen N, Finlay R D, Lundstr?m U S, et al. 2000. Mycorrhizal weathering: A true case of mineral plant nutrition? Biogeochemistry, 49: 53-67
[65]  Van Hees P A W, Rosling A, Lundstrom U S, et al. 2006. The biogeochemical impact of ectomycorrhizal conifers on major soil elements (Al, Fe, K and Si). Geoderma, 136: 364-377
[66]  Van Sch?ll L, Hoffland E, Van Breemen N. 2006a. Organic anion exudation by ectomycorrhizal fungi and Pinus sylvestris in response to nutrient deficiencies. New Phytol, 170: 153-163
[67]  Van Sch?ll L, Smits M M, Hoffland E. 2006b. Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytol, 171: 805-814
[68]  Wang X J, Chen X P, Kappler A, et al. 2009a. Arsenic binding to iron(II) minerals produced by an iron(III)-reducing aeromonas strain isolated from paddy soil. Environ Toxicol Chem, 28: 2255-2262
[69]  Wang X J, Chen X P, Yang J, et al. 2009b. Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil. J Environ Sci, 21: 1562-1568
[70]  Weber K A, Achenbach L A, Coates J D. 2006. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol, 4: 752-764
[71]  White A F, Schulz M S, Vivit D V, et al. 2012. The impact of biotic/abiotic interfaces in mineral nutrient cycling: A study of soils of the Santa Cruz chronosequence, California. Geochim Cosmochim Acta, 77: 62-85

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133