全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

汶川地震剪切滑动面微-纳米级颗粒的特征、形成机制及地震意义

, PP. 1821-1832

Keywords: 汶川地震,断层滑动面,微-纳米级颗粒,松散结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

?在2008年汶川5.12大地震同震主地表破裂带—北川-映秀破裂带中,多处断层滑动面上可见到具有强烈变形特征的薄层断层泥.在地表垂直位移量较大的西南段和东北段,选取八角庙、和尚坪和沙坝探槽中的断层泥为研究对象,利用立体镜和扫描电镜对断层泥的组构特征和Y剪切面上的微-纳米级颗粒进行形态和结构研究.观测研究结果显示,汶川5.12大地震的同震断层泥发育有明显的Y和R剪切和平直擦痕.断层滑动摩擦面磨损、研磨、粉末化则是汶川同震断层泥中微-纳米级颗粒形成的主要途径.地震断层滑动会产生摩擦热,但并不排除热分解在断层泥滑动面上纳米粒子形成过程中的重要作用.断层摩擦滑动面上普遍存有微-纳米单体及其复合体两类颗粒,微-纳米颗粒形态有球状、蚕虫状、饼状和块状等.其主要结构是散布状和堆积状结构,但也有少量条带状和层状结构,而结构单元之间常有空隙,显现松散接触.在条带状和层状结构中,仅有异化的单体颗粒,而在散布状和堆积状结构中除了主要是由单体颗粒异化形成的蚕虫状,块状和圆饼状形态的复体颗粒外,还有未变形的单体球状颗粒.Y剪切面上微-纳米颗粒的散布状、堆积状、条带状和层状结构都是在相同的地震快速变形过程中极端不平衡条件下形成的.条带状和层状结构是塑性变形,而散布状和堆积状则是脆性变形,不连续的动态摩擦(断层粘滑)是松散结构形成的主要机制.汶川地震同震断层滑动面微-纳米级颗粒的结构是地震断层滑动留下的地质形迹(不是假玄武玻璃),是地震断层滑动的记录,它可作为判定古地震断层的一种标准.

References

[1]  龙锋, 闻学泽, 徐锡伟. 2006. 华北地区地震活断层的震级-破裂长度\破裂面积的经验关系. 地震地质, 28: 511-535
[2]  晁洪太, 孙岩, 王志才, 等. 2009. 发震断裂的纳米级运动学观测一例. 自然科学进展, 19: 1076-1081
[3]  党嘉祥, 周永胜, 韩亮, 等. 2012. 虹口八角庙-深溪沟炭质泥岩同震断层泥的X 射线衍射分析结果. 地震地质, 34: 17-27
[4]  邓起东, 陈社发, 赵小麟. 1994. 龙门山及其临区的构造和地震活动及动力学. 地震地质, 16: 389-403
[5]  付碧宏, 王萍, 孔屏, 等. 2008. 四川汶川5·12 大地震同震滑动断层泥的发现及意义. 岩石学报, 24: 2237-2243
[6]  韩亮, 周永胜, 陈建业, 等. 2010. 汶川地震基岩同震断层泥结构特征. 第四纪研究, 30: 745-758
[7]  姜泽春, 1993. 纳米科学与地学. 地质地球化学, 2: 22-25
[8]  琚宜文, 姜波, 侯泉林, 等. 2005. 煤岩结构纳米变形与变质环境. 科学通报, 50: 1884-1892
[9]  琚宜文, 李小诗. 2009. 构造煤超微结构研究新进展. 自然科学进展, 19: 131-140
[10]  林传勇, 史兰斌, 刘行松, 等. 1995. 断层泥在基岩区断层新活动研究中的意义. 中国地震, 11: 26-32
[11]  刘德良, 杨强, 李王晔, 等. 2004. 郯庐断裂南段韧性剪切带糜棱岩中纳米级颗粒的发现. 科学技术与工程, 1: 42-43
[12]  Hemenway C L, Fulam E F, Phillips L. 1961. Nanometeorities. Nature, 190: 897-898
[13]  Jordan G, Higgins S R, Egglestom C M. 1999. Acidic dissolution of plagioclase: In situ observation by hydrothermal atomic force microscopy (AFM). Geochim Cosmochim Acta, 63: 3183-3191
[14]  Keulen N, Heilbronner R, Stunitz H, et al. 2007. Grain size distributions of fault rocks: A comparison between experimentally and naturally deformed granitoid. J Struct Geol, 29: 1282-1300
[15]  Lin A M. 2011. Seismic slip recorded by fluidized ultracataclastic vens formed in a coseismic shear zone during the 2008 Mw 7.9 Wenchuan earthquake. Geology, 39: 547-550
[16]  Logan J M, Friedman M, Higgs M, et al. 1979. Experimental studies of simulated fault gouge and their application to studies of natural fault zones. In: Bedrock, US Geol Surv Analysis of Actual Fault Zones. 305-343
[17]  Moore D E, Summers R, Byerlee J D. 1989. Sliding behavior and deformation textures of heated illite gouge. J Struct Geol, 11: 329-342.
[18]  Nikolaev P. 1999. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett, 313: 91-97
[19]  刘浩, 孙岩, 舒良树, 等. 2009. 华南武功山地区韧性剪切带的纳米尺度测量研究. 地质学报, 83: 609-616
[20]  宋龙伯, 江铁鹰. 1987. 断层破裂长度与震级关系的讨论. 地震研究, 10: 45-53
[21]  王萍, 付碧宏, 张斌等, 2009. 汶川8.0 级地震地表破裂带与岩性关系. 地球物理学报, 52: 131-139
[22]  徐锡伟, 闻学泽, 叶建青, 等. 2008. 汶川MS8.0 地震地表破裂带及其发震构造. 地震地质, 30: 588-629
[23]  徐锡伟, 陈桂华, 于贵华, 等. 2010. 5·12 汶川地震地表破裂基本参数的再论证及其构造内涵分析. 地球物理学报, 53: 2321-2336
[24]  张秉良, 林传勇, 方仲景, 等. 1993. 活断层中断层泥的显微结构特征及其意义. 科学通报, 38: 1306-1308
[25]  张立德, 牟季美. 2001. 纳米材料和纳米结构. 北京: 科学出版社. 544
[26]  Bakken B M, Hochella M F, Marshall J F. 1989. High-resolution microscopy of gold in unoxidized ore from the Carlin mine, Nevada. Econ Geol, 84: 171-179
[27]  Berezkin V L. 2001 Genesis of areliam shungite with reference to its distinctive structural features. Geochem Int, 30: 220-227
[28]  Bladh K, Falk J K L, Rohmund F. 2000. On the iron catalyzed growth of single-walled carbon nanotubes and encapsulated metal particles in the gas phase. Appl Phys A, 70: 317-322
[29]  Blenkinsop T. 2002. Deformation Microstrctures and Mechanisms in Minerals and Rocks. Dordrecht: Kluwer Academic Publishers. 7-23
[30]  Cowan D S. 1999. Do fault preserve a record of seismic slip? A field geologist''s opinion. J Struct Geol, 21: 995-1001
[31]  Durham W B, Weidner D J, Karato S I, et al. 2002. New developments in deformation experiment at high pressure. Rev Miner Geochem, 51: 21-49
[32]  Han R, Shimamoto T, Hirose T, et al. 2007. Ultralow friction of carbonate faults caused by thermal decomposition. Science, 316: 878-881
[33]  Rutter E H, Maddock R H, Hall S H, et al. 1986. Comparative microstructures of natural and experimentally produced clay-bearing fault gouges. In: Wang C Y, ed. Internal Structure of Fault Zones, Pure and Appl Geophys. 124: 3-30
[34]  Schofer J, Rehbein P, Stolz U, et al. 2001. Formation of tribochemical films and white layers on self-mated bearing steel surfaces in boundary lubricated sliding contact. Wear, 248: 7-15
[35]  Sun Y, Lu X C, Shu L, et al. 2005. Observation of ultra-microstructure of fault rocks in shearing-sliding zones. Prog Nat Sci, 15: 430-434
[36]  Sun Y, Shu L S, Lu X C, et al. 2008. A comparative study of natural and experimental nano-sized grinding grain textures in rocks. Chin Sci Bull, 53: 1217-1221
[37]  Tarran A, Bemard A, Garilanes J C, et al. 2000. Native gild in mineral precipitates from high temperature volcanic gases of Colima volcano,
[38]  Mexico. Appl Geochem, 15: 337-346
[39]  Wilson B, Dewers T, Reches Z, et al. 2005. Particle size and energetics of gouge from earthquake rupture zones. Nature, 434: 749-752
[40]  Xu X W, Xue Z W, Yu G H, et al. 2009. Co-seismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China. Geology, 37: 515-518
[41]  Yund R, Blanpied M, Tullis T, et al. 1990. Amorphous material in high strain experimental gouge. J Geophys Res, 95: 15589-15602

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413