全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

台湾峡谷的成因及其对沉积的控制

, PP. 1913-1924

Keywords: 深水沉积,重力流,沉积物波,台湾峡谷,地形地貌

Full-Text   Cite this paper   Add to My Lib

Abstract:

?台湾浅滩陆坡处于被动大陆边缘环境,发育众多的海底峡谷,其中台湾峡谷的走向与沿陆坡向下的侵蚀沟壑明显不同,呈近45°相交;在峡谷的下部又出现一次明显的转向,随后平行于陆坡自西向东延伸,最终汇入马尼拉海沟.本次研究利用多波速水深数据、高分辨地震资料和沉积柱状样,描述了台湾峡谷的地形地貌特征,初步讨论了峡谷的成因及其对沉积的控制作用.台湾峡谷的地形、地貌和沉积特征具有分段性:上段以侵蚀作用为主,呈V形下切,广泛发育滑动、滑塌等重力流类型;中段以侵蚀-沉积过渡作用为主,呈U形,发育内堤岸;下段以沉积作用为主,发育沉积物波,底流对峡谷内部沉积物有明显的改造(reworkedsand).台湾峡谷的形成演化与沉积物供给、重力滑动(滑塌)、断裂活动和海底刺穿密切相关:(1)由于陆源碎屑物质供应较充足,陆架边缘沉积物不断向海方向推进,在前缘形成滑动、滑塌,为峡谷的形成提供了动力;(2)断裂活动导致地层破碎,重力流优先侵蚀较脆弱的地层,使峡谷的延伸方向与周边侵蚀沟壑呈明显斜交;(3)海底刺穿形成海山,由于海山的阻挡作用,峡谷的下段转为近东西走向,同时大量沉积物在拐弯处溢流出来形成沉积物波.

References

[1]  丁巍伟, 李家彪, 李军. 2010a. 南海北部陆坡海底峡谷形成机制探讨. 海洋学研究, 28: 26-31
[2]  丁巍伟, 李家彪, 韩喜球, 等. 2010b. 南海东北部海底沉积物波的形态、粒度特征及物源、成因分析. 海洋学报, 32: 96-105
[3]  解习农, 陈志宏, 孙志鹏, 等. 2012. 南海西北陆源深水沉积体系内部构成特征. 地球科学, 37: 627-634
[4]  林畅松, 刘景彦, 蔡世祥, 等. 2001. 莺-琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景. 科学通报, 46: 69-72
[5]  王海荣, 王英民, 邱燕, 等. 2008. 南海东北部台湾浅滩陆坡的浊流沉积物波的发育及其成因的构造控制. 沉积学报, 26: 39-45
[6]  王英民, 徐强, 李冬, 等. 2011. 南海西北部晚中新世的红河海底扇. 科学通报, 56: 781-787
[7]  王振峰. 2012. 深水重要油气储层—琼东南盆地中央峡谷体系. 沉积学报, 30: 646-653
[8]  吴庐山, 鲍才旺. 2000. 南海东北部海底潜在地质灾害类型及其特征. 南海地质研究, 12: 87-101
[9]  吴时国, 秦蕴珊. 2009. 南海北部陆坡深水沉积体系研究. 沉积学报, 27: 921-930
[10]  徐尚, 王英民, 彭学超, 等. 2013a. 台湾峡谷中段沉积特征及流体机制探讨. 地质论评, 59: 845-852
[11]  徐尚, 王英民, 彭学超, 等. 2013b. 台湾峡谷HD133和HD77柱状样的沉积构成和发育背景. 沉积学报, 32: 325-330
[12]  徐尚, 王英民, 彭学超, 等. 2012. 台湾峡谷HD133柱状样中重力流、底流交互沉积的证据. 地质学报, 86: 1792-1798
[13]  许怀智, 蔡东升, 孙志鹏, 等. 2012. 琼东南盆地中央峡谷沉积充填特征及油气地质意义. 地质学报, 86: 641-650
[14]  姚衍桃, Harff J, Meyer M, 等. 2009. 南海西北部末次盛冰期以来的古海岸线重建. 中国科学D辑: 地球科学, 39: 753-762
[15]  Antobreh A A, Krastel S. 2006. Morphology, seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania: A newly discovered canyon preserved-off a major arid climatic region. Mar Petrol Geol, 23: 37-59
[16]  Arzola R G, Wynn R B, Lastras G, et al. 2008. Sedimentary features and processes in the Nazaré and Setúbal submarine canyons, west Iberian margin. Mar Geol, 250: 64-88
[17]  Chiang C S, Yu H S, Chou Y W. 2004. Characteristics of the wedge-top depozone of the southern Taiwan foreland basin system. Basin Res, 16: 65-78
[18]  Chiang C S, Yu H S. 2006. Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge. Geomorphology, 80: 199-213
[19]  Chiang C S. 1998. Tectonic Features of the Kaoping Shelf-Slope Region off Southwestern Taiwan: Wedge-top Depozne. Doctoral Dissertation. Taipei: National Taiwan University
[20]  Damuth J E. 1979. Migrating sediment waves created by turbidity currents in the northern South China Basin. Geology, 7: 520-523
[21]  de Stigter H C, Jesus C C, Boer W, et al. 2011. Recent sediment transport and deposition in the Lisbon-Setúbal and Cascais submarine canyons, Portuguese continental margin. Deep-Sea Res Part Ii-Top Stud Oceanogr, 58: 2321-2344
[22]  dos Reis A T, Gorini C, Mauffret A. 2005. Implications of salt-sediment interactions on the architecture of the Gulf of Lions deep-water sedimentary systems-western Mediterranean Sea. Mar Petrol Geol, 22: 713-746
[23]  Elliott G M, Shannon P M, Haughton P D W, et al. 2006. Mid- to Late Cenozoic canyon development on the eastern margin of the Rockall Trough, offshore Ireland. Mar Geol, 229: 113-132
[24]  Gong C L, Wang Y M, Peng X C, et al. 2012. Sediment waves on the South China Sea Slope off southwestern Taiwan: Implications for the intrusion of the Northern Pacific Deep Water into the South China Sea. Mar Petrol Geol, 32: 95-109
[25]  Green A. 2011. Submarine canyons associated with alternating sediment starvation and shelf-edge wedge development: Northern KwaZulu-Natal continental margin, South Africa. Mar Geol, 284: 114-126
[26]  Hagen R A, Bergersen D D, Moberly R, et al. 1994. Morphology of a large meandering submarine canyon system on the Peru-Chile forearc. Mar Geol, 119: 7-38
[27]  Harris P A, Whiteway T. 2011. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar Geol, 285: 69-86
[28]  Hasiotis T, Papatheodorou G, Ferentions G. 2005. A high resolution approach in the recent sedimentation processes at the head of Zakynthos Canyon, western Greece. Mar Geol, 214: 49-73
[29]  Henrich R, Cherubini Y, Meggers H. 2010. Climate and sea level induced turbidite activity in a canyon system offshore the hyperarid Western Sahara (Mauritania): The Timiris Canyon. Mar Geol, 275: 178-198
[30]  Huang C Y, Yuan P B, Lin C W, et al. 2000. Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 325: 1-21
[31]  Sun Q, Wu S, Cartwright J, et al. 2013. Focused fluid flowsystems of the Zhongjiannan Basin and Guangle Uplift, South China Sea. Basin Res, 25: 97-111
[32]  Jobe Z R, Lowe D R, Uchytil S J. 2011. Two fundamentally different types of submarine canyons along the continental margin of Equatorial Guinea. Mar Petrol Geol, 28: 843-860
[33]  Khripounoff A, Vangriesheim A, Crassous P, et al. 2009. High frequency of sediment gravity flow events in the Var submarine canyon (Mediterranean Sea). Mar Geol, 263: 1-6
[34]  Kuang Z, Zhong G, Wang L, et al. 2014. Channel-related sediment waves on the eastern slope offshore Dongsha Islands, northern South China Sea. J Asian Earth Sci, 79: 540-551
[35]  Laberg J S, Vorren T O, Dowdeswell J A, et al. 2000. The And?ya Slide and the And?ya Canyon, north-eastern Norwegian-Greenland Sea. Mar Geol, 162: 259-275
[36]  Lallemand S E, Tsien H H. 1997. An introduction to active collision in Taiwan. Tectonophysics, 274: 1-4
[37]  Lastras G, Arzola R G, Masson D G, et al. 2009. Geomorphology and sedimentary features in the Central Portuguese submarine canyons, Western Iberian margin. Geomorphology, 103: 310-329
[38]  Lastras G, Canals M, Urgeles R, et al. 2007. A walk down the Cap de Creus canyon, Northwestern Mediterranean Sea: Recent processes inferred from morphology and sediment bedforms. Mar Geol, 246: 176-192
[39]  Laursen J, Normark W R. 2002. Late Quaternary evolution of the San Antonio submarine canyon in the cental Chile forearc (~33°S). Mar Geol, 188: 365-390
[40]  Lee T Y, Hsu Y Y, Tang C H. 1995. Structural geology of the deformed front between 22 N and 23 N and migration of the Penghu canyon, offshore southwestern Taiwan arc-continent collision zone. In: International Conference and Third Sino-French Symposium on Active Collision in Taiwan (extended abstract). 219-227
[41]  Li G, Piper D J W, Campbell D C, et al. 2012. Turbidity deposition and the development of canyons through time on an intermittently glaciated continental margin: The Bonanza Canyon system, offshore eastern Canada. Mar Petrol Geol, 29: 90-103
[42]  Lin C C, Lin A T S, Liu C S, et al. 2009. Geological controls on BSR occurrences in the incipient arc-continent collision zone off southwest Taiwan. Mar Petrol Geol, 26: 1118-1131
[43]  McHugh C M G, Ryan W B F, Eittreim S, et al. 1998. The influence of San Gregorio fault on the morphology of Monterey Canyon. Mar Geol, 146: 63-91
[44]  Ogston A S, Drexler T M, Puig P. 2008. Sediment delivery, resuspension, and transport in two contrasting canyon environments in the southwest Gulf of Lions. Cont Shelf Res, 28: 2000-2016
[45]  Peakall J, McCaffrey W D, Kneller B C, et al. 2000. A process model for the evolution of submarine fan channels: Implications for sedimentary architecture. In: Bouma A H, Stone C G, eds. Fine-Grained Turbidite Systems. AAPG Memoir, 72: 73-88
[46]  Posementier H W. 2003. Depositional systems associated with a basin floor channel-levee system: Case study from Gulf of Mexico. Mar Petrol Geol, 20: 677-690
[47]  Saller A, Dharmasamadhi I N W. 2012. Controls on the development of valleys, canyons, and unconfined channele-levee complexes on the Pleistocene Slope of East Kalimantan, Indonesia. Mar Petrol Geol, 29: 15-34
[48]  Shanmugam G, Shrivastava S K, Bhagaban D. 2009. Sandy debrites and tidalites of Pliocene reservoir sands in upper-slope canyon environments, offshore Krishna-Godavari basin (India): implications. J Sediment Res, 79: 736-756
[49]  Shanmugam G. 2000. 50 years of the turbidite paradigm (1950s-1990s): Deep-water processes and facies models—A critical perspective. Mar Petrol Geol, 17: 285-342
[50]  Soh W, Tokuyama H. 2002. Rejuvenation of submarine canyon associated with ridge subduction, Tenryu canyon, off Tokai, central Japan. Mar Geol, 187: 203-220
[51]  Stow D A V, Mayall M. 2000. Deep-water sedimentary systems: New models for the 21st century. Mar Petrol Geol, 17: 125-135
[52]  Suppe J. 1987. The active Taiwan mountain belt. In: Schaer J, Rogers J, eds. Comparative Anatomy of Mountain Ranges. Princeton: Princeton University Press. 277-293
[53]  Weimer P, Slatt R M. 2007. Introduction to the petroleum geology of deepwater settings. AAPG Studies Geol, 171-276
[54]  Wynn R B, Masson D G, Stow D A V, et al. 2000. The Northwest African slope apron: A modern analogue for deep-water systems with complex seafloor topography. Mar Petrol Geol, 17: 253-265
[55]  Yu H S, Hong E. 2006. Shifting submarine canyons and development of a foreland basin in SW Taiwan: Controls of foreland sedimentation and longitudinal sediment transport. J Asian Earth Sci, 27: 922-932
[56]  Zheng Z, Li Q Y. 2000. Vegetation, climate, and sea level in the past 55000 years, Hanjiang Delta, Southeastern China. Quat Res, 53: 330-340
[57]  Sun Q, Wu S, Hovland M, et al. 2011. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea. Mar Petrol Geol, 28: 1146-1156
[58]  Suppe J. 1981. Mechanics of mountain building and metamorphism in Taiwan. Geol Soc China Mem, 4: 67-89

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133