全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

澳大利亚GPS坐标时间序列跨度对噪声模型建立的影响分析

DOI: 10.1007/s11430-014-4996-z, PP. 2461-2478

Keywords: 澳大利亚板块,GPS时间序列,噪声模型,最大似然估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

?坐标时间序列跨度对噪声模型建立存在较大影响.本文利用澳大利亚板块内10个连续GPS测站1998年1月至2009年7月的观测资料,采用4种策略分别以2.5年和递增的时间间隔,全面深入地分析了10个坐标时间序列的噪声特性变化,以及对应的速度及其不确定性的变化情况.通过分析10测站的噪声特性,发现采用假设白噪声加闪烁噪声组合的噪声模型与采用假设幂律过程的噪声模型具有等效性,其速度不确定性从时间跨度~9.5年开始趋于并且优于~0.2mm/a.同时,结果表明:采用长于9.5年的时间序列可以改善噪声对位置时间序列中速度以及不确定性的影响;并且在该区域不适合采用去除共模误差的空间滤波方法对时间序列进行处理;描述这些时间序列水平分量的最优随机模型为采用白噪声和闪烁噪声的组合.

References

[1]  陈为涛, 甘卫军, 肖根如, 等. 2012. 3·11日本大地震对中国东北部地区地壳形变态势的影响. 地震地质, 34: 425-439
[2]  程鹏飞, 秘金钟, 王华, 等. 2008. 国内部分IGS站点汶川地震前后的时变特征. 全球定位系统, 33: 11-15
[3]  江在森, 刘经南. 2010. 应用最小二乘配置建立地壳运动速度场与应变场的方法. 地球物理学报, 53: 1109-1117
[4]  田云锋, 沈正康. 2009. GPS坐标时间序列中非构造噪声的剔除方法研究进展.地震学报, 31: 68-81
[5]  王解先, 连丽珍, 沈云中. 2013. 奇异谱分析在GPS站坐标监测序列分析中的应用. 同济大学学报: 自然科学版, 41: 282-288
[6]  王敏, 沈正康, 董大南. 2005. 非构造形变对GPS连续站位置时间序列的影响和修正. 地球物理学报, 48: 1045-1052
[7]  王敏, 沈正康, 甘卫军, 等. 2008. GPS连续监测鲜水河断裂形变场动态演化. 中国科学D辑: 地球科学, 38: 575-581
[8]  杨少敏, 李杰, 王琪. 2008. GPS研究天山现今变形与断层活动. 中国科学D辑: 地球科学, 38: 872-880
[9]  袁林果, 丁晓利, 孙和平, 等. 2010. 利用GPS技术精密测定香港海潮负荷位移. 中国科学: 地球科学, 40: 699-714
[10]  朱文耀, 符养, 李彦. 2003. GPS高程导出的全球高程振荡运动及季节变化. 中国科学D辑: 地球科学, 33: 470-481
[11]  Beavan J, Tregoning P, Bevis M, et al. 2002. Motion and rigidity of the pacific plate and implications for plate boundary deformation. J Geophys Res, 107: 2261, doi: 10.1029/2001JB000282
[12]  Beavan J. 2005. Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand and comparison with data from US deep drilled braced monuments. J Geophys Res, 110: B08410, doi: 10.1029/2005JB003642
[13]  Blewitt G, Lavallée D. 2002. Effect of annual signals on geodetic velocity. J Geophys Res, 107: 2145, doi: 10.1029/2001JB000570
[14]  Blewitt G. 2008. Fixed point theorems of GPS carrier phase ambiguity resolution and their application to massive network processing: Ambizap. J Geophys Res, 113: B12410, doi: 10.1029/2008JB005736
[15]  Bock Y, Wdowinski S, Fang P, et al. 1997. Southern California permanent GPS geodetic array: Continuous measurements of regional crustal deformation between the 1992 Landers and 1994 Northridge earthquakes. J Geophys Res, 102: 18013-18033
[16]  Clark D, Australia G, McCue K. 2003. Australian paleoseismology: Towards a better basis for seismic hazard estimation. Ann Geophys, 46: 1087-1105
[17]  Crone A J, Machette M N, Bowman J R. 1997. Episodic nature of earthquake activity in stable continental regions revealed by palaeoseismicity studies of Australian and North American Quaternary faults. Aust J Earth Sci, 44: 203-214
[18]  Dong D, Fang P, Bock Y, et al. 2006. Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. J Geophys Res, 111: B03405, doi: 10.1029/2005JB003806
[19]  Dow J M, Neilan R E, Rizos C. 2009. The international GNSS service in a changing landscape of global navigation satellite systems. J Geod, 83: 191-198
[20]  Hillis R R, Reynolds S D. 2003. In situ stress field, fault reactivation and seal integrity in the Bight Basin. Report Book. South Australia Department of Primary Industries and Resources. 2: 4-21
[21]  Jackson D A, Chen Y. 2004. Robust principal component analysis and outlier detection with ecological data. Environmetrics, 15: 129-139
[22]  Langbein J, Johnson H. 1997. Correlated errors in geodetic time series: Implications for time-dependent deformation. J Geophys Res, 102: 591-603
[23]  Langbein J. 2008. Noise in GPS displacement measurements from Southern California and Southern Nevada. J Geophys Res, 113: B05405, doi: 10.1029/2007JB005247
[24]  Leonard M. 2008. One hundred years of earthquake recording in Australia. B Seismol Soc Am, 98: 1458-1470
[25]  Mao A, Harrison C G A, Dixon T H. 1999. Noise in GPS coordinate time series. J Geophys Res, 104: 2797-2816
[26]  Morgan P, Bock Y, Coleman R, et al. 1996. A Zero Order GPS Network for the Australian Region. UNISURV Report S-46, Kensington: University of New South Wales
[27]  Nikolaidis R. 2002. Observation of Geodetic and Seismic Deformation with the Global Positioning System. Doctoral Dissertation. San Diego: University of California San Diego
[28]  Sandiford M. 2003. Geomorphic constraints on the Late Neogene tectonics of the Otway Range, Victoria. Aust J Earth Sci, 50: 69-80
[29]  Santamaría-Gómez A, Bouin M N, Collilieux X, et al. 2011. Correlated errors in GPS position time series: Implications for velocity estimates. J Geophys Res, 116: B01405, doi: 10.1029/2010JB007701
[30]  Tregoning P. 2002. Plate kinematics in the western Pacific derived from geodetic observations. J Geophys Res, 107: 2020, doi: 10.1029/2001JB000406
[31]  Tregoning P. 2003. Is the Australian Plate deforming? A space geodetic perspective. Geol Soc Amer Spec Pap, 372: 41-48
[32]  Wdowinski S, Bock Y, Zhang J, et al. 1997. Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. J Geophys Res, 102: 18057-18070
[33]  Williams S D P, Bock Y, Fang P, et al. 2004. Error analysis of continuous GPS position time series. J Geophys Res, 109: B03412, doi: 10.1029/2003JB002741
[34]  Williams S D P. 2008. CATS: GPS coordinate time series analysis software. GPS Solut, 12: 147-153
[35]  Williams S D P. 2003. The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod, 76: 483-494
[36]  Zhang J, Bock Y, Johnson H, et al. 1997. Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities. J Geophys Res, 102: 18035-18055
[37]  Zumberge J F, Heflin M B, Jefferson D C, et al. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res, 102: 5005-5017

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413