全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纤维增强热固性聚合物基复合材料层间增韧研究进展

, PP. 273-285

Keywords: 聚合物基复合材料,层间增韧,聚合物颗粒,聚合物纤维,聚合物薄膜,离位增韧,液态成型,预浸料

Full-Text   Cite this paper   Add to My Lib

Abstract:

综述了纤维增强热固性聚合物基复合材料(PMC)层间增韧的最新研究进展。热固性复合材料由于基体树脂高的交联密度而呈脆性,表现出低的冲击损伤阻抗和损伤容限特征。柔性聚合物层间增韧是改善聚合物基复合材料层间断裂韧性和抗冲击性的有效手段,且不会降低热固性树脂的热性能和高模量。目前有3种层间增韧方法:颗粒增韧、聚合物纤维增韧和薄膜增韧。讨论了3种方法的概念、实施方案、增韧机理及研究成果。最后重点阐述了创新性的复合材料“离位”增韧思想,介绍了具有全部自主知识产权的“离位”复合材料高性能化技术体系,包括预浸料和液态成型两大复合材料产品系列。

References

[1]  Zhang J, Yang T, Lin T, et al. Phase morphology of nanofibre interlayers: critical factor for toughening carbon/epoxy composites[J]. Composites Science and Technology, 2012, 72(2): 256-262.
[2]  邹 科, 龙云泽, 吴佑实. 静电纺丝制备纳米纤维的进展及应用[J]. 合成纤维工业, 2007, 30(3): 54-57. Zou Ke, Long Yunze, Wu Youshi. Progress and application of electrospun nanofibers[J]. China Synthetic Fiber Industry, 2007, 30(3): 54-57.
[3]  Shivakumar K, Lingaiah S, Chen H, et al. Polymer nanofabric interleaved composite laminates[J]. AIAA Journal, 2009, 47(7): 1723-1729.
[4]  Hamer S, Leibovich H, Green A, et al. Mode I interlaminar fracture toughness of Nylon 66 nanofibrilmat interleaved carbon/epoxy laminates[J]. Polymer Composites, 2011, 32(11): 1781-1789.
[5]  Faro C L, Carter J T, Maskell R K, et al. Flexible polymer element as toughening agent in prepregs: WIPO Patent, 2002016481[P]. 2002-03-01.
[6]  Hogg P J. Toughening of thermoset composites with thermoplastic fibres[J]. Materials Science and Engineering: A, 2005, 412(1): 97-103.
[7]  Yun N G, Won Y G, Kim S C. Toughening of carbon fiber/epoxy composite by inserting polysulfone film to form morphology spectrum[J]. Polymer, 2004, 45(20): 6953-6958.
[8]  Singh S, Partridge I K. Mixed-mode fracture in an interleaved carbon-fibre/epoxy composite[J]. Composites Science and Technology, 1995, 55(4): 319-327.
[9]  Todo M, Jar P Y B, Takahashi K. Initiation of a mode-Ⅱ interlaminar crack from an insert film in the end-notched flexure composite specimen[J]. Composites Science and Technology, 2000, 60(2): 263-272.
[10]  Masters J E, Courter J L, Evans R E. Impact fracture and failure suppression using interleaved composites[C]//The 31st International SAMPE Symposium and Exhibition. Covina, California: The Society for the Advancement of Material and Process Engineering, 1986: 844-858.
[11]  Masters J E. Characterization of impact damage development in graphite/epoxy laminates[M]//Masters J E, Au J J. Fractography of Modern Engineering Materials: Composites and Metals, ASTM STP 948. Houston: ASTM Interna-tional, 1987: 238-258.
[12]  Sela N, Ishai O, Banks-Sills L. The effect of adhesive thickness on interlaminar fracture toughness of interleaved CFRP specimens[J]. Composites, 1989, 20(3): 257-264.
[13]  Ozdil F, Carlsson L A. Mode I interlaminar fracture of interleaved graphite/epoxy[J]. Journal of Composite Materials, 1992, 26(3): 432-459.
[14]  Aksoy A, Carlsson L A. Interlaminar shear fracture of interleaved graphite/epoxy composites[J]. Composites Science and Technology, 1992, 43(1): 55-69.
[15]  Mai Y W, Castino F. Fracture toughness of Kevlar-epoxy composites with controlled interfacial bonding[J]. Journal of Materials Science, 1984, 19(5): 1638-1655.
[16]  Pegoretti A, Cristelli I, Migliaresi C. Experimental optimization of the impact energy absorption of epoxy-carbon laminates through controlled delamination[J]. Composites Science and Technology, 2008, 68(13): 2653-2662.
[17]  Tsotsis T K. Interlayer toughening of composite materials[J]. Polymer Composites, 2009, 30(1): 70-86.
[18]  Yasaee M, Bond I P, Trask R S, et al. Damage control using discrete thermoplastic film inserts[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(6): 978-989.
[19]  Hojo M, Ando T, Tanaka M, et al. Modes I and Ⅱ interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf[J]. International Journal of Fatigue, 2006, 28(10): 1154-1165.
[20]  程群峰. 双马来酰亚胺树脂基复合材料的离位增韧研究[D]. 杭州: 浙江大学, 2007. Cheng Qunfeng. Studies on toughening composites based on BMI resin by ex-situ concept[D]. Hangzhou:Zhejiang University, 2007.
[21]  益小苏, 安学锋, 唐邦铭, 等. 一种提高层状复合材料韧性的方法: 中国, 01100981.0[P]. 2001-03-26. Yi Xiaosu, An Xuefeng, Tang Bangmin, et al. A method to increase the toughness of laminated composites: China, 01100981.0[P]. 2001-03-26.
[22]  益小苏, 许亚洪, 唐邦铭."离位"树脂转移模塑成型加工方法: 中国, 02101216.4[P]. 2002-09-18. Yi Xiaosu, Xu Yahong, Tang Bangmin. An ex-situ process-ing method for resin transfer molding: China, 02101216.4[P]. 2002-09-18.
[23]  唐邦铭, 益小苏, 许亚洪, 等. "离位"树脂膜渗透成型加工方法: 中国, 03105536.2[P]. 2003-01-24. Tang Bangmin, Yi Xiaosu, Xu Yahong, et al. An ex-situ proce-ssing method for resin film infusion: China, 03105536. 2[P]. 2003-01-24.
[24]  Yi X S, An X F. Developments of high-performance composites by innovative ex-situ concept for aerospace appli-cation[J]. Journal of Thermoplastic Composite Materials, 2009, 22(1): 29-49.
[25]  许亚洪. RTM工艺用树脂及"离位"RTM技术研究[D]. 北京: 北京航空材料研究院, 2003. Xu Yahong. Study on RTMable resins and the ex-situ RTM technology[D]. Beijing: Beijing Institute of Aeronautical Materials, 2003.
[26]  李小刚. PMR型聚酰亚胺树脂及其复合材料性能研究[D]. 北京: 北京航空材料研究院, 2005. Li Xiaogang. Study on PMR-type polyimide resin system and the composites[D]. Beijing: Beijing Institute of Aeronautical Materials, 2005.
[27]  益小苏, 安学锋, 张 明, 等. 一种液态成型复合材料用预 制织物及其制备方法: 中国, 200810000135.2[P]. 2008-01-04. Yi Xiaosu, An Xuefeng, Zhang Ming, et al. A method to manufacturing of composite prefabricated reinforced fabric for liquid molding: China, 200810000135.2[P]. 2008-01-04.
[28]  益小苏, 刘 刚, 张尧州, 等. 一种促进树脂流动的高性能预制增强织物及制备方法: 中国, 201010581859.8[P]. 2010-12-13. Yi Xiaosu, Liu Gang, Zhang Yaozhou, et al. A promoter resin flow performance preparation of prefabricated reinforced fabric: China, 201010581859.8[P]. 2010-12-13.
[29]  Yun N G, Won Y G, Kim S C. Toughening of carbon fiber/epoxy composite by inserting polysulfone film to form morphology spectrum[J]. Polymer, 2004, 45(20): 6953-6958.
[30]  益小苏, 许亚洪, 程群峰, 等. 航空树脂基复合材料的高韧性化研究进展[J]. 科技导报, 2008, 26(6): 84-92. Yi Xiaosu, Xu Yahong, Cheng Qunfeng, et al. Development of studies on polymer matrix aircraft composite materials highly toughened[J]. Science & Technology Review, 2008, 26(6): 84-92.
[31]  矫桂琼, 宁荣昌, 卢智先, 等. 层间增韧复合材料研究[J]. 宇航材料工艺, 2001, 31(4): 36-39. Jiao Guiqiong, Ning Rongchang, Lu Zhixian, et al. A study on interleaved composites[J].Aerospace Materials & Technology, 2001, 31(4): 36-39.
[32]  Kim J K, Mackay D B, Mai Y W. Drop-weight impact damage tolerance of CFRP with rubber-modified epoxy matrix[J]. Composites, 1993, 24(6): 485-494.
[33]  Jang K, Cho W J, Ha C S. Influence of processing method on the fracture toughness of thermoplastic-modified, carbon-fiber-reinforced epoxy composites[J]. Composites Science and Technology, 1999, 59(7): 995-1001.
[34]  Sj?gren B A, Berglund L A. Toughening mechanisms in rubber-modified glass fiber/unsaturated polyester composites[J]. Polymer Composites, 1999, 20(5): 705-712.
[35]  Verrey J, Winkler Y, Michaud V, et al. Interlaminar fracture toughness improvement in composites with hyperbranched polymer modified resin[J]. Composites Science and Technology, 2005, 65(10): 1527-1536.
[36]  Pagano N J, Pipes R B. The influence of stacking sequence on laminate strength[J]. Journal of Composite Materials, 1971, 5(1): 50-57.
[37]  Jain L K, Mai Y W. On the effect of stitching on mode I delamination toughness of laminated composites[J]. Composites Science and Technology, 1994, 51(3): 331-345.
[38]  Jain L K, Mai Y W. Determination of mode Ⅱ delamination toughness of stitched laminated composites[J]. Composites Science and Technology, 1995, 55(3): 241-253.
[39]  Dransfield K A, Jain L K, Mai Y W. On the effects of stitching in CFRPs-I. Mode I delamination toughness[J]. Composites Science and Technology, 1998, 58(6): 815-827.
[40]  Jain L K, Dransfield K A, Mai Y W. On the effects of stitching in CFRPs-Ⅱ. Mode Ⅱ delamination toughness[J]. Composites Science and Technology, 1998, 58(6): 829-837.
[41]  Watt A, Goodwin A A, Mouritz A P. Thermal degradation of the mode I interlaminar fracture properties of stitched glass fibre/vinyl ester composites[J]. Journal of Materials Science, 1998, 33(10): 2629-2638.
[42]  Yan W, Liu H Y, Mai Y W. Mode Ⅱ delamination toughness of Z-pinned laminates[J]. Composites Science and Techno-logy, 2004, 64(13): 1937-1945.
[43]  Cartié D D R, Troulis M, Partridge I K. Delamination of Z-pinned carbon fibre reinforced laminates[J]. Composites Science and Technology, 2006, 66(6): 855-861.
[44]  Naik R A. Failure analysis of woven and braided fabric reinforced composites[J]. Journal of Composite Materials, 1995, 29(17): 2334-2363.
[45]  Chan W S, Ochoa O O. Edge delamination resistance by a crictical ply termination[J]. Key Engineering Materials, 1991, 37: 285-304.
[46]  Howard W E, Jr T G, Jones R M. Composite laminate free-edge reinforcement with U-shaped caps part 11: theoretical-experimental correlation[J]. AIAA Journal, 1989, 27(5): 617-623.
[47]  Hillermeier R W, Seferis J C. Interlayer toughening of resin transfer molding composites[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(5): 721-729.
[48]  Odagiri N, Kishi H, Yamashita M. Development of TORAYCA prepreg P2302 carbon fiber reinforced plastic for aircraft primary structural materials[J]. Advanced Composite Materials, 1996, 5(3): 249-254.
[49]  Lee S H, Noguchi H, Kim Y B, et al. Effect of interleaved non-woven carbon tissue on interlaminar fracture toughness of laminated composites: Part I-Mode Ⅱ[J]. Journal of Composite Materials, 2002, 36(18): 2153-2168.
[50]  Lee S H, Noguchi H, Kim Y B, et al. Effect of interleaved non-woven carbon tissue on interlaminar fracture toughness of laminated composites: Part I-Mode Ⅱ[J]. Journal of Composite Materials, 2002, 36(18): 2153-2168.
[51]  Matsuda S, Hojo M, Ochiai S, et al. Effect of ionomer thickness on mode I interlaminar fracture toughness for ionomer toughened CFRP[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(11): 1311-1319.
[52]  Yun N G, Won Y G, Kim S C. Toughening of carbon fiber/epoxy composite by inserting polysulfone film to form morphology spectrum[J]. Polymer, 2004, 45(20): 6953-6958.
[53]  Gao F, Jiao G, Lu Z, et al. Mode Ⅱ delamination and damage resistance of carbon/epoxy composite laminates interleaved with thermoplastic particles[J]. Journal of Composite Materials, 2007, 41(1): 111-123.
[54]  Walker L, Sohn M S, Hu X Z. Improving impact resistance of carbon-fibre composites through interlaminar reinforcement[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(6): 893-902.
[55]  Shivakumar K, Panduranga R. Interleaved polymer matrix composites-a review[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Boston: American Institute of Aeronautics and Astronautics, 2013:1-13.
[56]  益小苏. 先进树脂基复合材料高性能化理论与实践[M]. 北京: 国防工业出版社, 2011. Yi Xiaosu. Theory and application of high-performance polymer matrix composites[M]. Beijng: National Defense Industry Press, 2011.
[57]  Sela N, Ishai O. Interlaminar fracture toughness and toughening of laminated composite materials: a review[J]. Composites, 1989, 20(5): 423-435.
[58]  益小苏. 先进复合材料技术研究与发展[M]. 北京: 国防工业出版社, 2006. Yi Xiaosu. Research and development of advanced composites technology[M]. Beijng: National Defense Industry Press, 2006.
[59]  Hillermeier R W, Seferis J C. Interlayer toughening of resin transfer molding composites[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(5): 721-729.
[60]  Hunston D L, Moulton R J, Johnston N J, et al. Matrix resin effects in composite delamination: mode I fracture aspects[M]//Johnston N J. Toughened Composites: Symposium on Toughened Composites, ASTM STP 937. Houston: ASTM International, 1987: 74-94.
[61]  Dejan S. Delamination properties of a vinyl-ester/glass fibre composite toughened by particulate-modified interlayers[D]. Canberra: Department of Engineering, Austrlian National University, 2001.
[62]  Woo E M, Mao K L. Evaluation of interlaminar-toughened poly (etherlmide)-modified epoxy/carbon fiber composites[J]. Polymer Composites, 1996, 17(6): 799-805.
[63]  Hsiao H M, Ni C N, Wu M D, et al. A novel optical technique for observation of global particle distribution in toughened composites[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(9): 1523-1529.
[64]  Hsiao H M. Compression-after-impact strength and surface morphology in toughened composite materials[J]. Inter-national Journal of Fracture, 2012, 176(2): 229-236.
[65]  Pearson R A, Yee A F. Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies[J]. Journal of Materials Science, 1991, 26 (14), 3828-3844.
[66]  Pearson R A, Yee A F. Toughening mechanisms in thermoplastic-modified epoxies: 1. Modification using poly(phenylene oxide)[J]. Polymer, 1993, 34(17): 3658-3670.
[67]  Scott J M, Phillips D C. Carbon fibre composites with rubber toughened matrices[J]. Journal of Materials Science, 1975, 10(4): 551-562.
[68]  Gilbert E N, Hayes B S, Seferis J C. Interlayer toughened unidirectional carbon prepreg systems: effect of preformed particle morphology[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(3): 245-252.
[69]  Gao F, Jiao G, Lu Z, et al. Mode Ⅱ delamination and damage resistance of carbon/epoxy composite laminates interleaved with thermoplastic particles[J]. Journal of Composite Materials, 2007, 41(1): 111-123.
[70]  Odagiri N, Kishi H, Nakae T. T800H/3900-2 toughened epoxy prepreg system: toughening concept and mechanism[C]//Proceedings of the American Society for Composites. Sixth Technical Conference. Composite Materials, Mechanics and Processing. New York: Technomic Publishing Company, 1991: 43-52.
[71]  Hojo M, Matsuda S, Tanaka M, et al. Mode I delamination fatigue properties of interlayer-toughened CF/epoxy lamin-ates[J]. Composites Science and Technology, 2006, 66(5): 665-675.
[72]  Kageyama K, Kimpara I, Ohsawa I, et al. Mode I and mode Ⅱ delamination growth of interlayer toughened carbon/epoxy (T800H/3900-2) composite system[M]//Martin R H. Composite Materials: Fatigue and Fracture (Fifth Volume), ASTM STP 1230. Houston: ASTM International, 1995: 19-37.
[73]  Matsuda S, Hojo M, Ochiai S, et al. Effect of ionomer thickness on mode I interlaminar fracture toughness for ionomer toughened CFRP[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(11): 1311-1319.
[74]  Sihn S, Kim R Y, Huh W, et al. Improvement of damage resistance in laminated composites with electrospun nano-interlayers[J]. Composites Science and Technology, 2008, 68(3): 673-683.
[75]  Li G, Li P, Yu Y, et al. Novel carbon fiber/epoxy composite toughened by electrospun polysulfone nanofibers[J]. Materials Letters, 2008, 62(3): 511-514.
[76]  Li G, Li P, Zhang C, et al. Inhomogeneous toughening of carbon fiber/epoxy composite using electrospun polysulfone nanofibrous membranes by in situ phase separation[J]. Composites Science and Technology, 2008, 68(3): 987-994.
[77]  Zhang J, Lin T, Wang X. Electrospun nanofibre toughened carbon/epoxy composites: effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness[J]. Composites Science and Technology, 2010, 70(11): 1660-1666.
[78]  Liu L, Liang Y M, Xu G Y, et al. Mode I interlaminar fracture of composite iaminates incorporating with ultrathin fibrous sheets[J]. Journal of Reinforced Plastics and Composites, 2008, 27(11): 1147-1162.
[79]  Sohn M S, Hu X Z. Comparative study of dynamic and static delamination behaviour of carbon fibre/epoxy composite laminates[J]. Composites, 1995, 26(12): 849-858.
[80]  Sohn M S, Hu X Z, Kim J K, et al. Impact damage characterisation of carbon fibre/epoxy composites with multi-layer reinforcement[J]. Composites Part B: Engineering, 2000, 31(8): 681-691.
[81]  Zucchelli A, Focarete M L, Gualandi C, et al. Electrospun nanofibers for enhancing structural performance of composite materials[J]. Polymers for Advanced Technologies, 2011, 22(3): 339-349.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133