全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于二维邻域保持判别嵌入的人脸识别

DOI: 10.16451/j.cnki.issn1003-6059.201506007, PP. 528-534

Keywords: 人脸识别,二维邻域保持嵌入,特征提取,类内邻域结构,类间距离关系

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出二维邻域保持判别嵌入(2DNPDE)算法,该算法是一种有监督的基于二维图像矩阵的特征提取算法.为表示样本的类内邻域结构和类间距离关系,分别构建类内邻接矩阵和类间相似度矩阵.2DNPDE所获得的投影空间不但使不同类数据点的低维嵌入相互分离,而且保留同类样本的邻域结构和不同类样本的距离关系.在ORL和AR人脸数据库上的实验表明,该算法具有更好的识别效果.

References

[1]  Liu Q S, Lu H Q, Ma S D, A Survey: Subspace Analysis for Face Recognition. Acta Automatica Sinica, 2003, 29(6): 900-911 (in Chinese)(刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法.自动化学报, 2003, 29(6): 900-911)
[2]  Turk M, Pentland A. Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86
[3]  Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
[4]  Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. 1st Edition. Cambridge, UK: Cambridge University Press, 2004
[5]  Schlkopf B, Smola A, Müller K R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 1998, 10(5): 1299-1319
[6]  Yang J, Gao X M, Zhang D, et al. Kernel ICA: An Alternative Formulation and Its Application to Face Recognition. Pattern Recognition, 2005, 38(10): 1784-1787
[7]  Yang M H. Kernel Eigenfaces vs. Kernel Fisherfaces: Face Recognition Using Kernel Methods // Proc of the 5th IEEE International Conference on Automatic Face and Gesture Recognition. Washington, USA, 2002: 215-220
[8]  Pless R, Souvenir R. A Survey of Manifold Learning for Images. IPSJ Trans on Computer Vision and Applications, 2009, 1(1): 83-94
[9]  Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290(5500): 2323-2326
[10]  Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500): 2319-2323
[11]  Belkin M, Niyogi P. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering // Dietterich T G, Becker S, Ghah-ramani Z, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2001, 14: 585-591
[12]  He X F, Cai D, Yan S C, et al. Neighborhood Preserving Embedding // Proc of the 10th IEEE International Conference on Compu-ter Vision. Beijing, China, 2005, II: 1208-1213
[13]  Zhang D M, Fu M S, Luo B. Image Recognition with Two-Dimensional Neighbourhood Preserving Embedding. Pattern Recognition and Artificial Intelligence, 2011, 24(6): 810-815 (in Chinese)(张大明,符茂胜,罗 斌.基于二维近邻保持嵌入的图像识别.模式识别与人工智能, 2011, 24(6): 810-815)
[14]  Yang J, Zhang D, Frangi A F, et al. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Re-cognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137
[15]  Li M, Yuan B Z. 2D-LDA: A Statistical Linear Discriminant Analysis for Image Matrix. Pattern Recognition Letters, 2005, 26 (5): 527-532
[16]  Xiong H L, Swamy M N S, Ahmad M O. Two-Dimensional FLD for Face Recognition. Pattern Recognition, 2005, 38(7): 1121-1124
[17]  Hu D W, Feng G Y, Zhou Z T. Two-Dimensional Locality Preserving Projections (2DLPP) with Its Application to Palmprint Recognition. Pattern Recognition, 2007, 40(1): 339-342
[18]  Chen S B, Zhao H F, Kong M, et al. 2D-LPP: A Two Dimensional Extension of Locality Preserving Projections. Neurocomputing, 2007, 70(4/5/6): 912-921

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133