全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

浙江龙游石榴石角闪岩(退变榴辉岩):华夏加里东期碰撞造山事件的新证据

DOI: 10.1360/N972015-00094, PP. 1207-1217

Keywords: 石榴石角闪岩,退变榴辉岩,P-T轨迹,华夏地块,碰撞造山

Full-Text   Cite this paper   Add to My Lib

Abstract:

在华夏地块浙江龙游地区发现了榴辉岩退变形成的石榴石角闪岩,其变质演化可分为3个阶段,分别为峰期榴辉岩相阶段(M1),矿物组合为绿辉石+石榴子石变斑晶(核部)+石英;峰后后成合晶阶段(M2),矿物组合为石榴子石变斑晶(边部)+单斜辉石变斑晶+斜长石,峰期榴辉岩相绿辉石在该阶段形成榴辉岩典型的降压分解结构;退变质角闪岩相阶段(M3),矿物组合为角闪石+斜长石,并在石榴子石边部形成角闪石和斜长石的反应边、后成合晶以及斜长石冠状体.由于强烈的退变质过程的影响,传统矿物温压计方法只能得到退变质角闪岩相的温压条件,获得T=664~691℃,P=0.68~0.73GPa.石榴子石成分环带表明该退变榴辉岩在峰后经历了一近等温降压过程.因此,结合岩相学分析、石榴子石成分剖面和退变质角闪岩相温压数据,可作出退变质过程的顺时针P-T轨迹,与碰撞造山过程一致.故该退变榴辉岩是华夏地块加里东期碰撞造山过程的产物,是华夏地块加里东期碰撞造山事件的新证据.

References

[1]  1 Zhang C L, Santosh M, Zhu Q B, et al. The Gondwana connection of the South China: Evidence from monazite and zircon geochronology from Cathysia Block. Gondwana Res, 2014, http://dx.doi.org/10.1016/j.gr.2014.09.007
[2]  2 Zhou X M, Zhu Y H. The magmatic mixing of the Jiangshao fault and the Precambrian geology (in Chinese). Sci China Ser D-Earth Sci, 1992, 3: 296-304 [周新民, 朱云鹤. 江绍断裂带的岩浆混合作用及其两侧的前寒武纪地质. 中国科学D辑:地球科学, 1992, 3: 296-
[3]  29 Yu J H, Wang L J, O'Reilly S Y, Yu J, et al. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia block, China. Precambrian Res, 2009, 174: 347-363
[4]  30 Moller C. Decompressed eclogites in the Sveconorwegian (-Grenvillian) orogen of SW Sweden:Petrology and tectonic implications. J Metamorph Geol, 1998, 16: 641-656
[5]  31 Zhao G C, Cawood P A, Wilde S A, et al. High-pressure granulites (retrograded eclogites) from the Hengshan complex, north China craton: Petrology and tectonic implications. J Petrol, 2001, 42: 1141-1170
[6]  32 Warren C J, Grujic D, Kellett D A, et al. Probing the depths of the India-Asia collision: U-Th-Pb monazite chronology of granulites from NW Bhutan. Tectonics, 2011, 30: 1-24
[7]  33 Djordje G, Warren C J, Joseph L W. Rapid synconvergent exhumation of Miocene-aged lower orogenic crust in the eastern Himalaya. Lithosphere, 2011, 3: 346-366
[8]  34 O'Brien P J, Rotzler J. High-pressure granulites: Formation, recovery of peak conditions and implications for tectonics. J Metamorph Geol, 2003, 21: 3-20
[9]  35 Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc, 1989, 42: 313-345
[10]  36 Lou Y X, Wei C J, Liu X C, et al. Metamorphic evolution of garnet amphibolite in the western Dabieshan eclogite belt, Central China: Evidence from petrography and phase equilibria modeling. J Asian Earth Sci, 2013, 63: 130-138
[11]  37 Liu J, Bohlen S R, Ernst W G. Stability of hydrous phases in subducting oceanic crust. Earth Planet Sci Lett, 1996, 143: 161-171
[12]  38 Wei C J, Su X L, Lou Y X, et al. A new interpretation of the conventional thermobarometry in eclogite: Evidence from the calculated PT pseudosections (in Chinese). Acta Petrol Sin, 2009, 25: 2078-2088 [魏春景, 苏香丽, 娄玉行, 等. 榴辉岩中传统地质温压计新解: 来自PT视剖面图的证据. 岩石学报, 2009, 25: 2078-
[13]  39 Wei C J, Clarke G L. Calculated phase equilibria for MORB compositions: Areappraisal of the metamorphic evolution of lawsonite eclogite. J Metamorph Geol, 2011, 29: 939-952
[14]  40 Wei C J, Qian J H, Tian Z L. Metamorphic evolution of medium-temperature ultra-high pressure (MT-UHP) eclogites from the South Dabie orogen, Central China: an insight from phase equilibria modelling. J Metamorph Geol, 2013, 31: 755-774
[15]  41 Leake B E, Woolley A R, Brich W D, et al. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Am Mineral, 1997, 82: 1019-1037
[16]  42 Ravna E K. The garnet-clinopyroxene geothermometer—an updated calibration. J Metamorph Geol, 2000, 18: 211-219
[17]  43 Newton R C, Perkins D. Thermodynamic calibration of geobarometers based on the assemblages garnet -orthopyroxene (clinopyroxene)- plagioclase-quartz. Am Mineral, 1982, 67: 203-222
[18]  44 Ravna E K. Distribution of Fe2+ and Mg between coexisting garnet and hornblende in synthetic and natural systems: An empirical calibration of the garnet-hornblende Fe-Mg geothermometer. Lithos, 2000, 53: 265-277
[19]  45 Holland T, Blundy J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol, 1994, 116: 433-447
[20]  46 Kohn M J, Spear F S. Two new barometers for garnet amphibolites with applications to southeastern Vermont. Am Mineral, 1990, 75: 89-96
[21]  47 Dale J, Holland T, Powell R. Hornblende-garnet-plagioclase thermobarometry: A natural assemblage calibration of the thermodynamics of hornblende. Contrib Mineral Petrol, 2000, 140: 353-362
[22]  48 Spear F S. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Washington DC: Mineralogical Society of America, 1993
[23]  49 Holdaway M J. Stability of andalusite and the aluminum silicate phase diagram. Am J Sci, 1971, 271: 97-131
[24]  50 Qian J H, Yang X Q, Liu L, et al. Zircon U-Pb dating,mineral inclusions,Lu-Hf isotopic data and their geological significance of garnet amphibolite from Songshugou, North Qinling (in Chinese). Acta Petrol Sin, 2013, 29: 3087-3098 [钱加慧, 杨秀清, 刘良, 等. 北秦岭松树沟榴闪岩锆石U-Pb定年、矿物包裹体和Lu-Hf同位素特征及其地质意义. 岩石学报, 2013, 29: 3087-
[25]  51 Yin A, Nie S, Craig P. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics, 1998, 17: 1-27
[26]  52 Shaw R D, Zeitler P K, McDougall I, et al. The Palaeozoic history of an unusual intracratonic thrust belt in Central Australia based on 40Ar-39Ar, K-Ar and fission track dating. J Geol Soc Lond, 1992, 149: 937-954
[27]  53 Berry R F, Holm O H, Steele D A. Chemical U-Th-Pb monazite datingand the Proterozoic history of King Island, southeast Australia. Aust J Earth Sci, 2005, 52: 461-471
[28]  54 Meert J G, Liebermann B S. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation. Gondwana Res, 2008, 14: 5-21
[29]  55 Nance R D, Murphy J B, Santosh M. The supercontinent cycle: A retrospective essay. Gondwana Res, 2014, 25: 4-29
[30]  56 Santosh M, Maruyama S, Sawaki Y, et al. The Cambrian explosion: Plumedriven birth of the second ecosystem on Earth. Gondwana Res, 2014, 25: 945-965
[31]  3 Shi Y S, Shu L S, Guo L Z, et al. On plate collision kinematics: Talking the Jiangnan and the eastern Tianshan orogenic belts as examples (in Chinese). Geol J China Univ, 1995, 1: 11-21 [施央申, 舒良树, 郭令智, 等. 论板块碰撞运动学研究——以江南和东天山造山带为例. 高校地质学报, 1995, 1: 11-
[32]  4 Gao L Z, Yang M G, Ding X Z, et al. SHRIMP U-Pb zircon dating of tuff in the Shuangqiaoshan and Heshangzhen groups in South China—constraints on the evolution of the Jiangnan Neoproterozoic orogenic belt (in Chinese). Geol Bull Chin, 2008, 27: 1744-1751 [高林志, 杨明桂, 丁孝忠, 等. 华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄——对江南新元古代造山带演化的制约. 地质通报, 2008, 27: 1744-
[33]  5 Hong D W, Xie X L, Zhang J S. Geological significance of the Hangzhou-Zhuguangshan-Huashan high-εNd granite belt (in Chinese). Geol Bull Chin, 2002, 21: 348-354 [洪大卫, 谢锡林, 张季生. 试析杭州-诸广山-花山高εNd值花岗岩带的地质意义. 地质通报, 2002, 21: 348-
[34]  6 Yao W H, Li Z X, Li W X, et al. From Rodinia to Gondwana Land: A tale of detrital zircon provenance analyses from the southern Nanhua basin South China. Am J Sci, 2014, 314: 278-313
[35]  7 Li X H, Li Z X, Li W X. Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: A synthesis. Gondwana Res, 2014, 25: 1202-1215
[36]  8 Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. GSA Bull, 2010, 122: 772-793
[37]  9 Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precam Res, 2009, 174: 117-128
[38]  10 Zhao G C, Cawood P A. Precambrian geology of China. Precambrian Res, 2012, 222-223: 13-54
[39]  11 Ren J S. On the geotectonics of southern China (in Chinese). Acta Geol Sin, 1990, 4: 275-289 [任纪舜. 论中国南部的大地构造. 地质学报, 1990, 4: 275-
[40]  12 Shui T. The geotectonics evolution of the basement in southern China (in Chinese). Bull Sci Technol, 1987, 3: 32-35 [水涛. 中国东南边缘大陆古基底构造演化. 科技通报, 1987, 3: 32-
[41]  13 Zhao G C, Cawood P A. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia block: Implications for Neoproterozoic collision-related assembly of the South China Craton. Am J Sci, 1999, 299: 309-339
[42]  14 Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res, 2008, 160: 179-210
[43]  15 Zheng Y F, Xiao W J, Zhao G C. Introduction to tectonics of China. Gondwana Res, 2013, 23: 1189-1206
[44]  16 Cawood P A, Wang Y J, Xu Y J, et al. Locating South China in Rodinia and Gondwana: A fragment of Greater Indian Lithosphere? Geology, 2013, 41: 903-906
[45]  17 Du Y S, Collerson K D, Zhao J X, et al. Characteristics and petrogenesis of granulite enclaves in S-type granites in the junction of Guangdong and Guangxi provinces (in Chinese). Acta Petrol Sin, 1999, 15: 309-314 [杜杨松, Collerson K D, 赵建新, 等. 两广交界地区S型花岗岩中麻粒岩包体的特征和成因. 岩石学报, 1999, 15: 309-
[46]  18 Wang Y J, Fan W M, Zhao G C, et al. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Res, 2007, 12: 404-416
[47]  19 Wang Y J, Zhang A M, Fan W M, et al. Kwangsian crustal anatexis withinthe eastern South China Block: Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains. Lithos, 2011, 127: 239-260
[48]  20 Yu J H, Zhou X M, O'Reilly Y S, et al. The age and protolith of the basement granulite in the eastern Nanling:the zircon U-Th-Pb isotopes (in Chinese). Chin Sci Bull, 2005, 50: 1758-1767 [于津海, 周新民, Y.S.O'Reilly, 等. 南岭东段基底麻粒岩相变质岩的形成时代和原岩性质: 锆石的U-Pb-Hf同位素研究. 科学通报, 2005, 50: 1758-
[49]  21 Yu J H, Wang L J, Wei Z Y, et al. Phanerozoic metamorphic episodes and characteristics of Cathaysia block (in Chinese). Geol J China Univ, 2007, 13: 474-483 [于津海, 王丽娟, 魏震洋, 等. 华夏地块显生宙的变质作用期次和特征. 高校地质学报, 2007, 13: 474-
[50]  22 Wang J G, Yu S Q, Hu Y H, et al. The discovery, petrology and geochronology of the retrograded eclogite in the Jiangshan-Shaoxing suture zone (in Chinese). Geol Chin, 2014, 41: 1356-1363 [汪建国, 余盛强, 胡艳华, 等. 江山-绍兴结合带榴闪岩的发现及岩石学、年代学特征. 中国地质, 2014, 41: 1356-
[51]  23 Shu L S, Yu J H, Jia D, et al. Early Paleozoic orogenic belt in the eastern segment of South China (in Chinese). Geo Bull Chin, 2008, 27: 1581-1593 [舒良树, 于津海, 贾东, 等. 华南东段早古生代造山带研究. 地质通报, 2008, 27: 1581-
[52]  24 Faure M, Shu L S,Wang B, et al. Intracontinental subduction: A possible mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova, 2009, 21: 360-368
[53]  25 Shu L S. Predevonian tectonic evolution of South China: From Cathaysian block to caledonian period folded orogenic belt (in Chinese). Geol J China Univ, 2006, 12: 418-431 [舒良树. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 2006, 12: 418-
[54]  26 Guo L Z, Shi Y S, Lu H F, et al. The pre-Devonian tectonic patterns and evolution of South China. J Asian Earth Sci, 1989, 3: 87-93
[55]  27 Hsü K J, Li J L, Chen H H, et al. Tectonics of South China: Key to understanding west Pacific geology. Tectonophysics, 1990, 183: 9-39
[56]  28 Ma R S. New Thought about the tectonic evolution of the South China: With discussion on several problems of the Cathaysian old land (in Chinese). Geol J China Univ, 2006, 12: 448-456 [马瑞士. 华南构造演化新思考——兼论“华夏古陆”说中的几个问题. 高校地质学报, 2006, 12: 448-

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133