全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

石墨烯的组装和织构调控:碳功能材料的液相制备方法

DOI: 10.1360/N972014-00728, PP. 3293-3305

Keywords: 石墨烯/氧化石墨烯,结构组装,织构调控,碳功能材料,液相制备,高体积能量密度储能

Full-Text   Cite this paper   Add to My Lib

Abstract:

石墨烯是sp2杂化碳质材料的基本结构单元,为构筑具有特定结构和功能的碳质材料带来新的契机.通过石墨烯/氧化石墨烯的液相组装和组装体织构的二次调控可以实现新颖碳功能材料的可控制备,这种液相制备方法实现了碳结构单元在溶液相直接自组装构建固相碳质材料.相比较而言,碳功能材料制备的经典方法,如固相炭化方法侧重于材料宏观尺度的结构和形态调控(如炭纤维),气相沉积方法长于在微观层面实现材料结构控制(如碳纳米管);而这种基于石墨烯自组装的液相制备方法架起了从微观到宏观的桥梁,实现了材料介观织构的精确构建.结合本课题组近年来的研究工作,本文对与石墨烯相关的液相结构组装和组装体织构调控方面的研究进展进行了简要评述和前景展望,并着重介绍了几种新颖的石墨烯基多孔碳功能材料.

References

[1]  1 Kroto H W, Heath J R, O'Brien S C, et al. C60: Buckminsterfullerene. Nature, 1985, 318: 162-163
[2]  6 Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6: 183-191
[3]  7 Yang Q H. Dreams may come: From fullerene, carbon nanotube to graphene. New Carbon Mater, 2011, 26: 1-4
[4]  8 Yin S, Niu Z, Chen X. Assembly of graphene sheets into 3D macroscopic structures. Small, 2012, 8: 2458-2463
[5]  9 Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper. Nature, 2007, 448: 457-460
[6]  19 Shao J J, Lü W, Yang Q H. Self-assembly of graphene oxide at interfaces. Adv Mater, 2014, 26: 5586-5612
[7]  20 Pham V H, Cuong T V, Hur S H, et al. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon, 2010, 48: 1945-1951
[8]  21 Kim F, Cote L J, Huang J X. Graphene oxide: Surface activity and two-dimensional assembly. Adv Mater, 2010, 22: 1954-1958
[9]  22 Wang C Y, Li D, Too C O, et al. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem Mater, 2009, 21: 2604-2606
[10]  25 Singh E, Chen Z, Houshmand F, et al. Superhydrophobic graphene foams. Small, 2013, 9: 75-80
[11]  26 Yavari F, Chen Z, Thomas A V, et al. High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci Rep, 2011, 1: 166
[12]  27 Li W, Gao S, Wu L, et al. High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions. Sci Rep, 2013, 3: 2125
[13]  36 Deville S, Saiz E, Nalla R K, et al. Freezing as a path to build complex composites. Science, 2006, 311: 515-518
[14]  37 Tang Z H, Shen S L, Zhuang J, et al. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew Chem Int Ed, 2010, 49: 4603-4607
[15]  38 Xu Y X, Sheng K X, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 2010, 4: 4324-4330
[16]  39 Wu Z S, Yang S, Sun Y, et al. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc, 2012, 134: 9082-9085
[17]  40 Zhao Y, Hu C, Hu Y, et al. A versatile, ultralight, nitrogen-doped graphene framework. Angew Chem Int Ed, 2012, 51: 11371-11375
[18]  41 Zhao J, Ren W, Cheng H M. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J Mater Chem, 2012, 22: 20197-20202
[19]  42 Wu Z S, Winter A, Chen L, et al. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater, 2012, 24: 5130-5135
[20]  43 Niu Z, Liu L, Zhang L, et al. A universal strategy to prepare functional porous graphene hybrid architectures. Adv Mater, 2014, 26: 3681-3687
[21]  44 Jiang X, Ma Y, Li J, et al. Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage. J Phys Chem C, 2010: 1530-1534
[22]  48 Tao Y, Kong D, Zhang C, et al. Monolithic carbons with spheroidal and hierarchical pores produced by the linkage of functionalized graphene sheets. Carbon, 2014, 69: 169-177
[23]  49 Bi H, Yin K, Xie X, et al. Low temperature casting of graphene with high compressive strength. Adv Mater, 2012, 24: 5124-5129
[24]  53 Bai H, Li C, Wang X L, et al. A pH-sensitive graphene oxide composite hydrogel. Chem Commun, 2010, 46: 2376-2378
[25]  54 Chen W, Yan L. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale, 2011, 3: 3132-3137
[26]  55 Cong H P, Ren X C, Wang P, et al. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano, 2012, 6: 2693-2703
[27]  56 Hu H, Zhao Z, Wan W, et al. Ultralight and highly compressible graphene aerogels. Adv Mater, 2013, 25: 2219-2223
[28]  61 Xu Z, Sun H, Zhao X, et al. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater, 2013, 25: 188-193
[29]  62 Xu Z, Liu Z, Sun H, et al. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. Adv Mater, 2013, 25: 3249-3253
[30]  63 Xu Z, Gao C. Graphene in macroscopic order: Liquid crystals and wet-spun fibers. Acc Chem Res, 2014, 47: 1267-1276
[31]  68 Shao J J, Wu S D, Zhang S B, et al. Graphene oxide hydrogel at solid/liquid interface. Chem Commun, 2011, 47: 5771-5773
[32]  69 Liu F, Seo T S. A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv Funct Mater, 2010, 20: 1930-1936
[33]  70 Ahn H S, Jang J W, Seol M, et al. Self-assembled foam-like graphene networks formed through nucleate boiling. Sci Rep, 2013, 3: 1396
[34]  71 Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater, 2013, 25: 2554-2560
[35]  72 Lü W, Li Z, Zhou G, et al. Tailoring microstructure of graphene-based membrane by controlled removal of trapped water inspired by the phase diagram. Adv Funct Mater, 2014, 24: 3456-3463
[36]  73 Tao Y, Xie X, Lü W, et al. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci Rep, 2013, 3: 2975
[37]  74 Niu Z, Chen J, Hng H H, et al. A leavening strategy to prepare reduced graphene oxide foams. Adv Mater, 2012, 24: 4144-4150
[38]  76 Gogotsi Y, Simon P. True performance metrics in electrochemical energy storage. Science, 2011, 334: 917-918
[39]  77 Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001, 39: 937-950
[40]  2 Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58
[41]  3 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666-669
[42]  4 Cheng C, Li D. Solvated graphenes: An emerging class of functional soft materials. Adv Mater, 2013, 25: 13-30
[43]  5 Neto A C, Guinea F, Peres N M. Drawing conclusions from graphene. Phys World, 2006, 19: 33-37
[44]  10 Tang L H, Wang Y, Li Y M, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater, 2009, 19: 2782-2789
[45]  11 Cong H-P, Ren X C, Wang P, et al. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ Sci, 2013, 6: 1185-1191
[46]  12 Chen H, Müller M B, Gilmore K J, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater, 2008, 20: 3557-3561
[47]  13 Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 2009, 9: 30-35
[48]  14 Chen C M, Yang Q H, Yang Y G, et al. Self-assembled free-standing graphite oxide membrane. Adv Mater, 2009, 21: 3007-3011
[49]  15 Lü W, Xia Z, Wu S, et al. Conductive graphene-based macroscopic membrane self-assembled at a liquid-air interface. J Mater Chem, 2011, 21: 3359-3364
[50]  16 Shao J J, Lü W, Guo Q, et al. Hybridization of graphene oxide and carbon nanotubes at the liquid/air interface. Chem Commun, 2012, 48: 3706-3708
[51]  17 Wu S D, Lü W, Xu J, et al. A graphene/poly(vinyl alcohol) hybrid membrane self-assembled at the liquid/air interface: Enhanced mechanical performance and promising saturable absorber. J Mater Chem, 2012, 22: 17204-17209
[52]  18 Chen C M, Huang J Q, Zhang Q, et al. Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon, 2012, 50: 659-667
[53]  23 Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater, 2011, 10: 424-428
[54]  24 Chen Z, Xu C, Ma C, et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater, 2013, 25: 1296-1300
[55]  28 Qiu L, Liu J Z, Chang S L, et al. Biomimetic superelastic graphene-based cellular monoliths. Nat Commun, 2012, 3: 1241-1247
[56]  29 Vickery J L, Patil A J, Mann S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv Mater, 2009, 21: 2180-2184
[57]  30 Estevez L, Kelarakis A, Gong Q, et al. Multifunctional graphene/platinum/Nafion hybrids via ice templating. J Am Chem Soc, 2011, 133: 6122-6125
[58]  31 Lee S H, Kim H W, Hwang J O, et al. Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew Chem Int Ed, 2010, 49: 10084-10088
[59]  32 Yin S, Zhang Y, Kong J, et al. Assembly of graphene sheets into hierarchical structures for high-performance energy storage. ACS Nano, 2011, 5: 3831-3838
[60]  33 Yin S, Goldovsky Y, Herzberg M, et al. Functional free-standing graphene honeycomb films. Adv Funct Mater, 2013, 23: 2972-2978
[61]  34 Choi B G, Yang M, Hong W H, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano, 2012, 6: 4020-4028
[62]  35 Chen C M, Zhang Q, Huang C H, et al. Macroporous "bubble" graphene film via template-directed ordered-assembly for high rate supercapacitors. Chem Commun, 2012, 48: 7149-7151
[63]  45 Xu Y, Lin Z, Huang X, et al. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano, 2013, 7: 4042-4049
[64]  46 Chen P, Xiao T Y, Qian Y H, et al. A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv Mater, 2013, 25: 3192-3196
[65]  47 Zhao Y, Liu J, Hu Y, et al. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv Mater, 2013, 25: 591-595
[66]  50 Xie X, Zhang C, Wu M B, et al. Porous MnO2 for use in a high performance supercapacitor: replication of a 3D graphene network as a reactive template. Chem Commun, 2013, 49: 11092-11094
[67]  51 Lü W, Tao Y, Ni W, et al. One-pot self-assembly of three-dimensional graphene macroassemblies with porous core and layered shell. J Mater Chem, 2011, 21: 12352-12357
[68]  52 Xu Y, Wu Q, Sun Y, et al. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano, 2010, 4: 7358-7362
[69]  57 Sudeep P M, Narayanan T N, Ganesan A, et al. Covalently interconnected three-dimensional graphene oxide solids. ACS Nano, 2013, 7: 7034-7040
[70]  58 Kim J E, Han T H, Lee S H, et al. Graphene oxide liquid crystals. Angew Chem Int Ed, 2011, 50: 3043-3047
[71]  59 Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun, 2011, 2: 571
[72]  60 Xu Z, Zhang Y, Li P, et al. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano, 2012, 6: 7103-7113
[73]  64 Cong H P, Ren X C, Wang P, et al. Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers. Sci Rep, 2012, 2: 613
[74]  65 Jalili R, Aboutalebi S H, Esrafilzadeh D, et al. Organic solvent-based graphene oxide liquid crystals: A facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures. ACS Nano, 2013, 7: 3981-3990
[75]  66 Worsley M A, Pauzauskie P J, Olson T Y, et al. Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc, 2010, 132: 14067-14069
[76]  67 Worsley M A, Olson T Y, Lee J R I, et al. High surface area, sp2-cross-linked three-dimensional graphene monoliths. J Phys Chem Lett, 2011, 2: 921-925
[77]  75 Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc Chem Res, 2013, 46: 1094-1103

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133