全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

水系锂离子电池的研究进展

DOI: 10.1360/972013-861, PP. 3274-3286

Keywords: 水系锂离子电池,正极,负极,嵌入化合物,金属锂负极

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用水电解质溶液的锂离子电池(简称水系锂离子电池)虽然能量密度较低,但可解决采用有毒、易燃有机溶剂电解液锂离子电池所涉及的安全性和高成本问题,同时有望克服现有水系可充电电池(如铅酸和镍氢电池)寿命短的瓶颈,作为智能电网用的储能电池具有很好的应用前景.本文综述了近年来水系锂离子电池在新型电池体系及相关电极材料的一些研究进展,对该领域所面临的挑战做了简单的讨论,并提出一些建设性的观点及可能的解决方案.此外,还对近两年发展起来的以金属锂为负极的水系电池体系(双液体系)做简单总结.

References

[1]  1 Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451: 652-657
[2]  8 Tian L, Yuan A B. Electrochemical performance of nanostructured spinel LiMn2O4 in different aqueous electrolytes. J Power Sources, 2009, 192: 693-697
[3]  11 Wang Y G, Luo J Y, Wu W, et al. Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds Ⅲ. Capacity fading mechanism of LiCo1/3Ni1/3Mn1/3O2 at different pH electrolyte solutions. J Electrochem Soc, 2007, 154: A228-A234
[4]  12 Rao M M, Jayalakshmi M, Schaf O, et al. Electrochemical behaviour of solid lithium nickelate (LiNiO2) in an aqueous electrolyte system. J Solid State Electrochem, 1999, 4: 17-23
[5]  13 Ruffo R, Wessells C, Huggins R A, et al. Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes. Electrochem Commun, 2009, 11: 247-249
[6]  15 Benedek R, Thackeray M M, Walle A. Free energy for protonation reaction in lithium-ion battery cathode materials. Chem Mater, 2008, 20: 5485-5490
[7]  16 Manicham M, Singh P, Thurgate S, et al. Redox behavior and surface characterization of LiFePO4 in lithium hydroxide electrolyte. J Power Sources, 2006, 158: 646-649
[8]  17 Mi C H, Zhang X G, Li H L. Electrochemical behaviors of solid LiFePO4 and Li0.99Nb0.01FePO4 in Li2SO4 aqueous electrolyte. J Electroanal Chem, 2007, 602: 245-254
[9]  18 Liu X H, Satio T, Doi T, et al. Electrochemical properties of rechargeable aqueous lithium ion batteries with an olivine-type cathode and a Nasicon-type anode. J Power Sources, 2009, 189: 706-710
[10]  23 Zhang M J, Dahn J R. Electrochemical lithium intercalation in VO2(B) in aqueous electrolytes. J Electrochem Soc, 1996, 143: 2730-2735
[11]  25 Kohler J, Makihara H, Uegatio H, et al. LiV3O8: Characterization as anode material for an aqueous rechargeable Li-ion battery system. Electrochim Acta, 2000, 46: 59-65
[12]  28 Wang H, Huang K L, Zeng Y Q, et al. Electrochemical properties of TiP2O7 and LiTi2(PO4)3 as anode material for lithium ion battery with aqueous solution electrolyte. Electrochim Acta, 2007, 52: 3280-3285
[13]  29 Luo J Y, Cui W J, He P, et al. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nature Chem, 2010, 2: 760-765
[14]  32 Cheng C, Li Z H, Zhan X Y, et al. A macaroni-like Li1.2V3O8 nanomaterial with high capacity for aqueous rechargeable lithium batteries. Electrochim Acta, 2010, 55: 4627-4631
[15]  35 Wang G J, Fu L J, Zhao N H, et al. An aqueous rechargeable lithium battery with good cycling performance. Angew Chem Int Ed, 2007, 46: 295-297
[16]  36 Wang G J, Zhao N H, Yang L C, et al. Characteristics of an aqueous rechargeable lithium battery (ARLB). Electrochim Acta, 2007, 52: 4911-4915
[17]  37 Luo J Y, Xia Y Y. Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv Funct Mater, 2007, 17: 3877-3884
[18]  38 Wessells C, Mantia F L, Deshazer H, et al. Synthesis and electrochemical performance of a lithium titanium phosphate anode for aqueous lithium-ion batteries. J Electrochem Soc, 2011, 158: A352-A355
[19]  40 Li W, McKinnon W R, Dahn J R. Lithium intercalation from aqueous-solutions. J Electrochem Soc, 1994, 141: 2310-2316
[20]  41 Dahn J R, Von Saken U, Juskow M W, et al. Rechargeable LiNiO2 carbon cells. J Electrochem Soc, 1991, 138: 2207-2211
[21]  46 Visco S J, Katz B D, Nimon Y S, et al. Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture. US Patent: 7282295 B2
[22]  51 Zhang T, Imanishi N, Shimonishi Y, et al. A novel high energy density rechargeable lithium/air battery. Chem Commun, 2010, 46: 1661-1663
[23]  52 Wang Y G, Zhou H S. A new type rechargeable lithium battery based on a Cu-cathode. Electrochem Commun, 2009, 11: 1834-1837
[24]  53 Li H Q, Wang Y G, Na H T, et al. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. J Am Chem Soc, 2009, 131: 15098-15099
[25]  54 Wang X J, Hou Y Y, Zhu Y S, et al. An aqueous rechargeable lithium battery using coated Li metal as anode. Scient Rep, 2013, doi: 10.1038/srep01401
[26]  55 Zhang T, Imanishi N, Hirano A, et al. Stability of Li/polymer electrolyte-ionic liquid composite/lithium conducting glass ceramics in an aqueous electrolyte. Electrochem Solid-State Lett, 2011, 14: A45-A48
[27]  2 Li W, Dahn J R, Wainwright D. Rechargeable lithium batteries with aqueous-electrolytes. Science, 1994, 264: 1115-1118
[28]  3 Wang G X, Zhong S, Bradhurst D H, et al. Secondary aqueous lithium-ion batteries with spinel anodes and cathodes. J Power Sources, 1998, 74: 198-201
[29]  4 Li N C, Patrissi C J, Che G L, et al. Rate capabilities of nanostructured LiMn2O4 electrodes in aqueous electrolyte. J Electrochem Soc, 2000, 147: 2044-2049
[30]  5 Eftekhari A. Electrochemical behavior of thin-film LiMn2O4 electrode in aqueous media. Electrochim Acta, 2001, 47: 495-499
[31]  6 Nakayama N, Nozawa T, Iriyama Y, et al. Interfacial lithium-ion transfer at the LiMn2O4 thin film electrode/aqueous solution interface. J Power Sources, 2007, 174: 695-700
[32]  7 Wang P, Yang H, Yang H Q. Electrochemical behavior of Li-Mn spinel electrode material in aqueous solution. J Power Sources, 1996, 63: 275-278
[33]  9 Stojkovic I B, Cvjeticanin N D, Mentus S V. The improvement of the Li-ion insertion behaviour of Li1.05Cr0.10Mn1.85O4 in an aqueous medium upon addition of vinylene carbonate. Electrochem Commun, 2010, 12: 371-373
[34]  10 Wang Y G, Luo J Y, Wang C X, et al. Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds Ⅱ. Comparison of LiMn2O4, LiCo1/3Ni1/3Mn1/3O2, and LiCoO2 positive electrodes. J Electrochem Soc, 2006, 153: A1425-A1431
[35]  14 Gu X, Liu J L, Yang J H, et al. First-principles study of H+ intercalation in layer-structured LiCoO2. J Phy Chem C, 2011, 115: 12672-12676
[36]  19 Sauvage F, Laffont L, Tarascon J M, et al. Factors affecting the electrochemical reactivity vs. lithium of carbon-free LiFePO4 thin films. J Power Sources, 2008, 175: 495-501
[37]  20 He P, Liu J L, Cui W J, et al. Investigation on capacity fading of LiFePO4 in aqueous electrolyte. Electrochim Acta, 2011, 56: 2351-2357
[38]  21 Liu Y, Mi C H, Yuan C, et al. Improvement of electrochemical and thermal stability of LiFePO4 cathode modified by CeO2. J Electroanal Chem, 2009, 628: 73-80
[39]  22 Li W, Dahn J R. Lithium-ion cells with aqueous-electrolytes. J Electrochem Soc, 1995, 142: 1742-1746
[40]  24 Wang F, Liu Y, Liu C Y. Hydrothermal synthesis of carbon/vanadium dioxide core-shell microspheres with good cycling performance in both organic and aqueous electrolytes. Electrochim Acta, 2010, 55: 2662-2666
[41]  26 Caballero A, Morales J, Vargas O A. Electrochemical instability of LiV3O8 as an electrode material for aqueous rechargeable lithium batteries. J Powre Sources, 2010, 195: 4318-4321
[42]  27 Li H Q, Zhai T Y, He P, et al. Single-crystal H2V3O8 nanowires: a competitive anode with large capacity for aqueous lithium-ion batteries. J Mater Chem, 2011, 21: 1780-1787
[43]  30 Xu Y, Zheng L, Xie Y. From synthetic montroseite VOOH to topochemical paramontroseite VO2 and their applications in aqueous lithium ion batteries. Dalton Trans, 2010, 39: 10729-10738
[44]  31 Zhao M S, Zheng Q Y, Wang F, et al. Electrochemical performance of high specific capacity of lithium-ion cell LiV3O8//LiMn2O4 with LiNO3 aqueous solution electrolyte. Electrochim Acta, 2011, 56: 3781-3784
[45]  33 Wang H B, Zeng Y Q, hunag K L, et al. Improvement of cycle performance of lithium ion cell LiMn2O4/LixV2O5 with aqueous solution electrolyte by polypyrrole coating on anode. Electrochim Acta, 2007, 52: 5102-5107
[46]  34 Wang H B, Huang K L, Zeng Y Q, et al. Stabilizing cyclability of an aqueous lithium-ion battery LiNi1/3Co1/3O2/LixV2O5 by polyaniline coating on the anode. Electrochem Solid-State Lett, 2007, 10: A199-A203
[47]  39 Wang Y G, Xia Y Y. A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system. Electrochem Commun, 2005, 7: 1138-1142
[48]  42 McKinnon W R, Haering R R. Mordern Aspects of Electrochemistry. New York: Plenum Press, 1983
[49]  43 Choi J, Alvarez E, Arunkumar T, et al. Proton insertion into oxide cathode during chemical delithiation. Electrochem Solid State Lett, 2006, 9: A241-A244
[50]  44 Choi J, Manthiram A. Chemical and structural instabilities of lithium ion battery cathodes. J Power Sources, 2006, 159: 249-253
[51]  45 Yu D Y W, Donoue K, Kadohata T, et al. Impurities in LiFePO4 and their influence on material characteristics. J Electrochem Soc, 2008, 155: A526-A530
[52]  47 Wang Y G, Li H Q, He P, et al. Controllable hydrogen generation from water. Chem Sus Chem, 2010, 3: 571-574
[53]  48 Ogasawara T, Debart A, Holzapfel M, et al. Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc, 2006, 128: 1390-1393
[54]  49 Freunberger S A, Chen Y H, Peng Z Q, et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J Am Chem Soc, 2011, 133: 8040-8047
[55]  50 Wang Y G, Zhou H S. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J Powre Sources, 2010, 195: 358-361

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133