全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

青藏高原西南部湖泊沉积正构烷烃及其单体δD的气候意义

DOI: 10.1360/csb2014-59-19-1892, PP. 1892-1903

Keywords: 正构烷烃,湖泊沉积,氢同位素比值,降水,青藏高原

Full-Text   Cite this paper   Add to My Lib

Abstract:

对青藏高原西南部-南部3个不同气候区9个湖泊的表层沉积物正构烷烃及其单体氢同位素分布特征进行了分析,并与流域植被的正构烷烃和气候要素进行了对比.结果表明,湖泊表层沉积物的n-C23主要来自水生植物,n-C27~n-C33来自陆生高等植物.湖泊表层沉积物正构烷烃n-C27~n-C33平均碳链长度(ACL27~33)与年均降水量正相关.陆生植物来源的高碳链n-C29和n-C31氢同位素比值分布范围分别为-169‰-214‰和-185‰-226‰,与年均降水量反相关,但与大气降水的年均δD变化一致,且n-C31的δD值与生长季节(5~9月)大气降水平均δD值相关性较强(R2=0.74).水生植物来源的n-C23的δD值较陆生n-C31偏高(平均约27‰),体现了青藏高原西南部-南部干旱-半干旱地区湖水由于强蒸发作用引起的较大气降水富集δD值的特点.εnC25~31/p(高碳链表观分馏)平均值为~95‰,较欧洲湿润地区明显偏高(-128‰),其中εn-C31/p约为-116‰(SD=9)较恒定,进一步说明湖泊表层沉积物n-C31对于环境变化具有较好的指示作用.

References

[1]  3 Glinton G E, Hamilton R J. Leaf epicuticular waxes. Science, 1967, 156:1322-1335
[2]  4 Ficken K J, Li B, Swain D L, el al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem, 2000, 31:745-749
[3]  5 Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments-II. Org Geochem,1987, 18:513-527
[4]  10 Hou J Z, D'Andrea W J, Huang Y S. Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, and experimental assessments. Geochim Cosmochim Acta, 2008, 72:3503-3517
[5]  12 Zheng M, Wan T S M, Fang M, et al. Characterization of the no n-volatile organic compounds in the aerosols of Hong Kong identification, abundance and origin. Atmos Environ, 1997, 31:227-237
[6]  13 Cheng Y, Li S M, Leithead A. Spatial and diurnal distributions of n-alkanes and n-alkan-2-ones on PM2.5 aerosols in the Lower Fraservalley, Canada. Atmos Environ, 2006, 40:2706-2720
[7]  19 Zhang Z H, Zhao M X, Yang X D, et al. A hydrocarbon biomarker record for the last 40 kyr of plant input to Lake Heqing, southwestern China. Org Geochem, 2004, 35:595-613
[8]  20 Zheng Y H, Zhou W J, Meyers P A, et al. Lipid biomarkers in the Zoigê-Hongyuan peat deposit:Indicators of Holocene climate changes in West China. Org Geochem, 2007, 38:1927-1940
[9]  21 Jahren A H, Byrne M C, Graham H V, et al. The environmental water of the middle Eocene Arctic:Evidence from δD, δ18O and δ13C within specific compounds. Paleogeogr Paleoclimatol Paleoecol, 2009, 271:96-103
[10]  22 Liu W G, Huang Y S. Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau. Org Geochem, 2005, 36:851-860
[11]  23 Seki O, Meyers P A, Kawamura K, et al. Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in northeast China during the last 16 kyr. Org Geochem, 2009, 40:671-677
[12]  24 Xie S, Nott C J, Avsejs L A, et al. Palaeoclimate records in compound-specific D values of a lipid biomarker in ombrotrophic peat. Org Geochem, 2000, 31:1053-1057
[13]  25 Xie S C, Nott C J, Avsejs L A, et al. Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction. Geochim Cosmochim Acta, 2004, 68:2849-2862
[14]  26 Jia G D, Wei K, Chen F J, et al. Soil n-alkane δD vs. altitude gradients along Mount Gongga, China. Geochim Cosmochim Acta, 2008, 72:5165-5174
[15]  28 Zhu L P, Wu Y H, Wang J B, et al. Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. Holocene, 2008, 18:831-839
[16]  29 吉磊. 中国过去2000 年湖泊沉积记录的高分辨率研究:现状与问题. 地球科学进展, 1995, 10:169-175
[17]  30 Liu Z H, Henderson A C G, Huang Y S. Regional moisture source changes inferred from Late Holocene stable isotope records. Adv Atmos Sci, 2008, 25:1021-1028
[18]  31 林晓, 朱立平, 汪勇, 等. 西藏纳木错湖芯正构烷烃及其反映的8.4 ka 以来的环境变化. 科学通报, 2008, 53:2352-2357
[19]  32 Mügler I, Sachse D, Werner M, et al. Effect of lake evaporation on δD values of lacustrine n-alkanes:A comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany). Org Geochem, 2008, 39:711-729
[20]  33 Aichner B, Herzschuh U, Wilkes H, et al. δD values of n-alkanes in Tibetan lake sediments and aquatic macrophytes—A surface sediment study and application to a 16 ka record from Lake Koucha. Org Geochem, 2010, 41:779-790
[21]  34 夏忠欢, 徐柏青, Migler I, 等. 青藏高原湖泊表层沉积物中陆源正构烷烃氢同位素比值的气候意义. 湖泊科学, 2008, 20:695-704
[22]  35 He Y, Theakstone W H, Zhang Z, et al. Asynchronous Holocene climatic change across China. Quat Res, 2004, 61:52-63
[23]  36 Herzschuh U. Palaeo-moisture evolution at the margins of the Asian monsoon during the last 50 ka. Quat Sci Rev, 2006, 25:163-178
[24]  37 中国科学院青藏高原综合科学考察队. 西藏植被. 北京:科学出版社, 1988. 298-330
[25]  38 Ji Z M, Kang S C. Double-nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios. J Atmos Sci, 2012, 70:1278-1290
[26]  43 Sessions A L. Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spartina alterniflora. Geochim Cosmochim Acta,2006, 70:2153-2162
[27]  44 林晓, 朱立平, 王君波, 等. 西藏纳木错表层沉积物中正构烷烃的来源与空间分布特征. 湖泊科学, 2009, 21:654-662
[28]  45 Smith F A, Freeman K H. Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses. Geochim Cosmochim Acta, 2006, 70:1172-1187
[29]  46 Sachse D, Radke J, Gleixner G. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochim Cosmochim Acta, 2004, 63:4877-4889
[30]  52 Mead R, Xu Y P, Chong J, et al. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes. Org Geochem, 2005, 36:363-370
[31]  53 Poynter J G, Eglinton G. Molecular composition of three sediments from hole 717C:The Bengal Fan. In:Cochran J R, Stow D A V, eds. Proceedings of the Ocean Drilling Program Scientific Results. 1990, 116:155-161
[32]  54 Poynter J G, Farrimond P, Brassell S C, et al. Aeolian-derived higher-plant lipids in the marine sedimentary record:links with paleoclimate. In:Leinen M, Sarnthein M, eds. Palaeoclimatology and Palaeometeorology:Modern and Past Patterns of Global Atmosphere Transport. Alphen aan den Rijn:Kluwer, 1989. 435-462
[33]  56 Zhou W J, Xie S C, Meyers P A, et al. Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence. Org Geochem, 2005, 36:1272-1284
[34]  57 Schwark L, Zink K, Lechterbeck J. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. Geology, 2002, 30:463-466
[35]  58 崔景伟, 黄俊华, 谢树成. 湖北清江现代植物叶片正构烷烃和烯烃的季节性变化. 科学通报, 2008, 53:1318-1323
[36]  59 Gao L, Hou J Z, Jaime T, et al. Mathematical modeling of the aquatic macrophyte inputs of mid-chain n-alkyl lipids to lake sediments:Implications for interpreting compound specific hydrogen isotopic records. Geochim Cosmochim Acta, 2011, 75:3781-3791
[37]  60 Yang H, Pagani M, Briggs D E G, et al. Carbon and hydrogen isotope fractionation under continuous light:Implications for paleoenvironmental interpretations of the High Arctic during Paleogene warming. Oecologia, 2009, 160:461-470
[38]  1 Eglinton T I, Eglinton G. Molecular proxies for paleoclimatology. Earth Planet Sci Lett, 2008, 275:1-16
[39]  2 Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions:A summary of examples from the Laurentian Great Lakes. Org Geochem, 2003, 34:261-289
[40]  6 Han J, Calvin M. Hydrocarbon distribution of algae and bacteria and microbiologica1 activity in sediments. Proc Natl Acad Sci USA,1969, 64:436-443
[41]  7 Huang Y S, Clemens S C, Liu W G, et al. Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula. Geology, 2007, 35:531-534
[42]  8 Pagani M, Pedentchouk N, Huber M, et al. Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature,2006, 442:671-675
[43]  9 Schefuss E, Schouten S, Schneider R R. Climatic controls on central African hydrology during the past 20000 years. Nature, 2005, 437:1003-1006
[44]  11 Nishimura M, Baker E W. Possible origin of n-alkanes with a remarkable even to odd predominance in recent sediments. Geochim Cosmochim Acta, 1986, 50:299-305
[45]  14 Jeng W L. Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Mar Chem, 2006, 102:242-251
[46]  15 Sun Q, Xie M M, Shi L M, et al. Alkanes, compound-specific carbon isotope measures and climate variation during the last millennium from varved sediments of Lake Xiaolongwan, northeast China. J Paleolimn, 2013, 50:331-344
[47]  16 Simoneit B R T. Organic matter of the troposphere-Ⅲ. Characterization and sources of petroleum and pyrogenic residues in aerosols over the western United States. Atmos Environ, 1984, 18:51-67
[48]  17 Simoneit B R T. Organic matter of the troposphere—V. Application of molecular marker analysis to biogenic emissions into the troposphere for source reconciliations. J Atmos Chem, 1989, 8:251-275
[49]  18 Hinrichs K U, Rinna J, Rullk?tter J. Late Quaternary paleoenvironmental conditions indicated by marine and terrestrial molecular biomarkers in sediments from the Santa Barbara basin. In:Wilson R C, Tharp V L, eds. Proceedings of the Fourteenth Annual Pacific Climate Conference. California:California Department of Water Resources, 1997. 1-9
[50]  27 Bai Y, Fang X M, Gleixner G, et al. Effect of precipitation regime on δD values of soil n-alkanes from elevation gradients—Implications for the study of paleo-elevation. Org Geochem, 2011, 42:838-845
[51]  39 Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshw Biol,1973, 3:259-265
[52]  40 Sachse D, Radke J, Gleixner G. δD values of individual n-alkanes from terrestrial plants along a climatic gradient—Implications for the sedimentary biomarker record. Org Geochem, 2006, 37:469-483
[53]  41 Otto A, Simpson M J. Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from Western Canada. Biogeochemistry, 2005, 74:377-409
[54]  42 Rommerskirchen F, Plader A, Eglinton G, et al. Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes. Org Geochem, 2006, 37:1303-1332
[55]  47 Dansgaard W. Stable isotopes in precipitation. Tellus, 1964, 16:436-468
[56]  48 Bowen G J, Revenaugh J. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res, 2003, 39:1299-1311
[57]  49 Meyers P A, Ishiwatari R. Lacustrine organic geochemistry:An overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem, 1993, 20:867-900
[58]  50 Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments-Ⅱ. Org Geochem,1987, 11:513-527
[59]  51 Cranwell P A. Lipid geochemistry of sediments from Upton Broad, a small productive lake. Org Geochem, 1984, 17:25-37
[60]  55 张虎才, 杨明生, 张文翔, 等. 洛川黄土剖面S-4 古土壤及相邻黄土层分子化石与植被变化. 中国科学D 辑:地球科学, 2007, 37:1634-1642
[61]  61 Gat J R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci, 1996, 24:225-262
[62]  62 Polissar P J, Freeman K H. Effects of aridity and vegetation on plant-wax δD in modern lake sediments. Geochim Cosmochim Acta, 2010,74:5785-5797
[63]  63 Feakins S J, Sessions A L. Controls on the D/H ratios of plant leaf waxes in an arid ecosystem. Geochim Cosmochim Acta, 2010, 74:2128-2141
[64]  64 Aichner B, Herzschuh U, Wilkes H. Influence of aquatic macrophytes on the stable carbon isotope signatures of sedimentary organic matter in lakes on the Tibetan Plateau. Org Geochem, 2010, 41:706-718

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133