全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

巴丹吉林沙漠腹地降水事件后的沙山蒸发观测

DOI: 10.1360/csb2014-59-7-615, PP. 615-622

Keywords: 降水,蒸发,入渗,极值重现期,涡度相关,巴丹吉林沙漠

Full-Text   Cite this paper   Add to My Lib

Abstract:

巴丹吉林沙漠腹地高大沙山和湖泊的形成机理一直是学术界研究的热点,其中关于高大沙山上大气降水能否入渗补给地下水一直存在较大争议.本文基于沙漠腹地的2年降水观测和沙漠边缘的长时间尺度降水资料,结合概率分布模型和日降水极值重现期分析,对沙漠地区的降水等级进行了划分,并利用沙漠腹地的自动气象站和涡度相关系统的观测数据,对不同等级降水事件后的沙山蒸发进行分析.结果显示,沙漠地区的降水事件可分为3类,即5mm以下的常规降水事件CP(占总降水的90%以上)、20mm左右的普通年份最大日降水OAM和数十年一遇的极端强降水事件EP.CP和OAM事件后,降水分别约需1~3d和3~4周可被蒸发出地表,EP事件后水分则需较长的时间方可蒸发出地表.三类降水事件的累积蒸发与累积降水表明,高大沙山上的大气降水对地下水没有显著补给作用.本研究对深入探讨巴丹吉林沙漠腹地湖泊群的形成机理有重要价值.

References

[1]  1 Yang X P, Ma N, Dong J F, et al. Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China. Quat Res, 2010, 73: 10-19
[2]  3 Chen J S, Li L, Wang J Y, et al. Groundwater maintains dune landscape. Nature, 2004, 432: 459
[3]  4 Chen J S, Zhao X, Sheng X F, et al. Geochemical information indicating the water recharge to lakes and immovable megadunes in the Badain Jaran Ddesert. Acta Geol Sin, 2005, 79: 540-546
[4]  5 陈建生, 赵霞, 盛雪芬, 等. 巴丹吉林沙漠湖泊群与沙山形成机理. 科学通报, 2006, 51: 2789-2796
[5]  6 顾慰祖, 陈建生, 汪集旸, 等. 巴丹吉林高大沙山表层孔隙水现象的疑义. 水科学进展, 2004, 15: 695-699
[6]  7 Yang X P, Williams M A. The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia, China. Catena, 2003, 51: 45-60
[7]  8 王涛. 巴丹吉林沙漠形成演变的若干问题. 中国沙漠, 1990, 10: 29-40
[8]  9 孙培善, 孙德钦. 内蒙古高原西部水文地质初步研究. 见: 中国治沙队, 编. 治沙研究(第六号). 北京: 科学出版社, 1964. 245-317
[9]  10 Jaeckel D. The Badain Jaran Desert: Its origin and development. Geowissenschaften, 1996, 14: 272-274
[10]  11 Jakel D. The importance of dunes for groundwater recharge and storage in China. Z Geomorphol, 2002, 126(Suppl): 131-146
[11]  12 赵景波, 邵天杰, 侯雨乐, 等. 巴丹吉林沙漠高大沙山区沙层含水量与水分来源探讨. 自然资源学报, 2011, 26: 694-702
[12]  13 董春雨. 阿拉善沙漠沙漠水循环观测实验与湖泊水量平衡. 硕士学位论文. 兰州: 兰州大学, 2011
[13]  14 朱金峰, 王乃昂, 陈红宝, 等. 基于遥感的巴丹吉林沙漠范围与面积分析. 地理科学进展, 2010, 29: 1087-1094
[14]  15 Warner T T. Desert Meteorology. Cambridge: Press Syndicate of the University of Cambridge, 2004
[15]  16 马宁, 王乃昂, 朱金峰, 等. 巴丹吉林沙漠周边地区近50a来气候变化. 中国沙漠, 2011, 31: 1541-1547
[16]  17 Aubinet M, Grelle A, Ibrom A, et al. Estimates of the annual net carbon and water exchange of European forests: The EUROFLUX methodology. Adv Ecol Res, 2000, 30: 113-175
[17]  20 Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfer. Quat J Res Meteorol Soc, 1980, 106: 85-100
[18]  21 Kljun N, Calanca P, Rotach M W, et al. A simple parameterisation for flux footprint predictions. Bound-Layer Meteorol, 2004, 112: 503-523
[19]  22 Stoy P C, Mauder M, Foken T, et al. A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity. Agric For Meteorol, 2013, 171: 137-152
[20]  27 Zhao W Z, Liu B. The response of sap flow in shrubs to rainfall pulses in the desert region of China. Agric For Meteorol, 2010, 150: 1297-1306
[21]  28 何清, 向鸣, 李立. 塔克拉玛干沙漠腹地一次强降水天气分析. 干旱区研究, 1998, 15: 15-20
[22]  29 Houston J. Variability of precipitation in the Atacama desert: Its cause and hydrological impact. Int J Climatol, 2006, 26: 2181-2198
[23]  32 Zhang Q, Xu C Y, Chen Y D, et al. Extreme value analysis of annual maximum water levels in the Pearl River Delta, China. Front Earth Sci China, 2009, 3: 154-163
[24]  33 Xia J, She D X, Zhang Y Y, et al. Spatio-temporal trend and statistical distribution of extreme precipitation events in Huaihe River Basin during 1960-2009. J Geogr Sci, 2012, 22: 195-208
[25]  37 Malhi Y, Pegoraro E, Nobre A D, et al. Energy and water dynamics of a central Amazonian rain forest. J Geophys Res, 2002, 107, doi: 10.1029/2001JD000623
[26]  39 Krishnan P, Meyers T P, Scott R L, et al. Energy exchange and evapotranspiration over two semi-arid grasslands in North America. Agric For Meteorol, 2012, 153: 31-44
[27]  40 Kampf S K, Tyler S W, Ortizc C A, et al. Evaporation and land surface energy budget at the Salar de Atacama, Northern Chile. J Hydol, 2005, 310: 236-252
[28]  41 Unland H E, Houser P R, Shuttleworth W J, et al. Surface flux measurement and modeling at a semi-arid Sonoran Desert site. Agric For Meteorol, 1996, 82: 119-153
[29]  42 Xu X Y, Zhang R D, Xue X Z, et al. Determination of evapotranspiration in the desert area using lysimeters. Commun Soil Sci Plan, 1998, 29: 1-13
[30]  43 原鹏飞, 丁国栋, 王炜炜, 等. 毛乌素沙地降雨入渗和蒸发特征. 中国水土保持科学, 2008, 6: 23-27
[31]  44 Chen J S, Liu X Y, Wang C Y, et al. Isotopic constraints on the origin of groundwater in the Ordos Basin of northern China. Environ Earth Sci, 2012, 66: 505-517
[32]  45 Chen J S, Sun X X, Gu W Z, et al. Isotopic and hydrochemical data to restrict the origin of the groundwater in the Badain Jaran Desert, Northern China. Geochem Int, 2012, 50: 455-465
[33]  47 张永明, 胡顺军, 翟禄新, 等. 塔里木盆地裸地潜水蒸发计算模型. 农业工程学报, 2009, 25: 27-32
[34]  2 王乃昂, 马宁, 陈红宝, 等. 巴丹吉林沙漠腹地降水特征初步分析. 水科学进展, 2013, 24: 153-160
[35]  18 Dijk A V, Moene A F, DeBruin H A R. The Principles of Surface Flux Physics: Theory, Practice and Description of the ECPACK Library. Wageningen: Meteorology and Air Quality Group of Wageningen University, 2004
[36]  19 Moncrieff J B, Clement R, Finnigan J, et al. Averaging, detrending and filtering of eddy covariance time series. In: Lee X, Massman W J, Law B E, eds. Handbook of Micrometeorology: A Guide for Surface Flux Measurement. Dordrecht: Kluwer Academic, 2004. 7-31
[37]  23 Wilson K, Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sites. Agric For Meteorol, 2002, 113: 223-243
[38]  24 马宁. 巴丹吉林沙漠能量分配与湖泊蒸发量的观测研究. 硕士学位论文. 兰州: 兰州大学, 2012
[39]  25 Oncley S P, Foken T, Vogt R, et al. The energy balance experiment EBEX-2000. Part I: Overview and energy balance. Bound-Layer Meteorol, 2007, 123: 1-28
[40]  26 Liu S M, Xu Z W, Zhu Z L, et al. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J Hydrol, 2013, 487: 24-38
[41]  30 Jenkinson A F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quat J Res Meteorol Soc, 1955, 81: 158-171
[42]  31 Justel A, Pena D, Zamar R. A multivariate Kolmogorov-Smimov test of goodness of fit. Stat Probabil Lett, 1997, 35: 251-259
[43]  34 李江风. 大漠腹地暴雨与积水. 新疆气象, 1990, 13: 47
[44]  35 Foken T, Wichura B. Tools for quality assessment of surface-based flux measurements. Agric For Meteorol, 1996, 78: 83-105
[45]  36 Baldocchi D D, Falge E, Gu L H, et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Amer Meteorol Soc, 2001, 82: 2415-2434
[46]  38 Yang F L, Zhou G S. Characteristics and modeling of evapotranspiration over a temperate desert steppe in Inner Mongolia, China. J Hydol, 2011, 396: 139-147
[47]  46 张光辉, 聂振龙, 王金哲, 等. 黑河流域水循环过程中地下水同位素特征及补给效应. 地球科学进展, 2005, 20: 511-519

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413