全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

激波管研究煤油/空气混合气的自着火特性

, PP. 85-93

Keywords: 激波管,着火滞燃期,煤油,敏感性分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用反射激波方法开展了煤油/空气混合气在温度为1445~1650K,压力为0.1MPa,当量比为1.0条件下的着火滞燃期研究.采用拉瓦尔喷管雾化装置雾化煤油形成气溶胶,入射激波促使煤油气溶胶快速蒸发和扩散,反射激波诱导煤油/空气混合气着火.利用ICCD冻结煤油/空气混合气着火流场,进行着火特性的可视化分析.初始温度增加,煤油/空气混合气着火变强,温度小于1515K时,在整个观察范围内,火焰呈现连续但不规律形态.温度大于1560K时,火焰呈平面但不连续形态.实验结果表明煤油/空气混合气的着火滞燃期随初始温度的增加而缩短,在整个研究范围内,煤油/空气混合气的总活化能未发生变化.实验结果与文献数据吻合很好.本文提出了新的三组分(10%甲苯/10%乙苯/80%正葵烷)煤油替代品,并使用Honnet机理进行着火滞燃期的数值模拟,在整个研究范围内,计算值与实验值有较好的吻合性.敏感性分析表明,反应H+O2OH+O对着火滞燃期的敏感性系数最高,随着温度增加,敏感性系数随之增加.CH3的消耗反应对整个链分支反应起促进作用,正葵烷的脱氢反应对整个链反应起抑制作用.基元反应速率(ROP)和瞬态放热率分析得出H+O2OH+O和O+H2OH+H是OH生成的主要基元反应,同时也是着火过程中主要吸热反应,链终止反应R3是着火过程中主要的放热反应.火焰结构分析表明CO和H2O出现在主燃之前,并导致初始压力在显著着火之前略有升高.

References

[1]  1. Curran E T. Scramjet engines: The first forty years. J Propul Power, 2001, 17: 1138-1148??
[2]  3. Vasu S S, Davidson D F, Hanson R K. Jet fuel ignition delay times: Shock tube experiments over wide conditions and surrogate model predictions. Combust Flame, 2008, 152: 125-143??
[3]  4. Ranzi E, Frassoldati A, Granata B, et al. Wide range kinetic modeling study of the pyrolysis, partial oxidation, and combustion of heavy n-alkanes. Ind Eng Chem Res, 2005, 44: 5170-5183??
[4]  6. 廖钦, 徐胜利. 雾化激波管研制和煤油点火延时测量. 实验流体力学, 2009, 23: 70-74
[5]  8. 王高峰, 马成飚, 王宝源, 等. 激波诱导甲烷点火化学反应区的可视化实验研究. 科学通报, 2008, 53: 2371-2378
[6]  11. Dagaut P, Cathonnet M. The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling. Prog Energ Combust Sci, 2006, 32: 48-92??
[7]  13. Edwards T, Maurice L Q, Surrogate mixtures to represent complex aviation and rocket fuels. J Propul Power, 2001, 17: 461-466
[8]  14. Turanyi T. Applications of sensitivity analysis to combustion chemistry. Reliab Eng Syst Safety, 1997, 57: 41-48??
[9]  16. Dagaut P. On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel. Phys Chem Chem Phys, 2002, 4: 2079-2094??
[10]  17. Shen H P S, Vanderover J, Oehlschlaeger M A. A shock tube study of iso-octane ignition at elevated pressures: The influence of diluent gases. Combust Flame, 2008, 115: 739-755
[11]  18. Curran H J, Gaffuri P, Pitz W J. A comprehensive modeling study of iso-octane oxidation. Combust Flame, 2002, 129: 253-280??
[12]  2. Char J M, Liou W J, Yeh J H, et al. Ignition and combustion study of JP-8 fuel in a supersonic flow field. Shock Waves, 1996, 6: 259-266??
[13]  5. Honnet S, Seshadri K, Niemann U, et al. A surrogate fuel for kerosene. P Combust Inst, 2009, 32: 485-492??
[14]  7. Davidson D F, Haylett D R, Hanson R K. Development of an aerosol shock tube for kinetic studies of low vapor pressure fuels. Combust Flame, 2008, 155: 108-117??
[15]  9. Horning D C, Davidson D F, Hanson R K. Study of the high temperature autoignition of n-alkane/O2/Ar mixtures. J Propul Power, 2002, 18: 363-371??
[16]  10. Vasudevan V, Davidson D F, Hanson R K. Shock tube measurements of toluene ignition times and OH concentration time histories. P Combust Inst, 2005, 30: 1155-1163??
[17]  12. Patterson P M, Kyne A G, Pourkashanian M, et al. Combustion of kerosene in counterflow diffusion flames. J Propul Power, 2001, 17: 453-460??
[18]  15. Turanyi T, Tomlin A S, Pilling M J. On the error of the quasi steady state approximation. J Phys Chem, 1993, 97: 163-172??

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133