全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

微生物自模板法制备多孔中空微球及应用

DOI: 10.1360/972014-00173, PP. 2440-2451

Keywords: 介孔材料,中空微球合成,中空微球应用,微生物自模板法

Full-Text   Cite this paper   Add to My Lib

Abstract:

微生物作为一种生物质资源不仅具有种类繁多、生物量巨大、易于再生且廉价易得的特点,而且微生物本身就具有高度复杂的微/纳米构造和丰富的功能基团,经过修饰和处理就可以得到结构和功能多样的微/纳米材料.微生物自模板法直接利用微生物天然的球形构造并以其自身物质为主要原料经过一定的处理形成多孔中空微球,具有无需制备模板、反应步骤少和化学试剂消耗量低等优点,与传统的软、硬模板法相比有了较大的进步.本文将利用微生物自模板法制备多孔中空微球的主要合成方法归纳为溶剂顺序抽提法、高温碳化法和水热碳化法.微生物通过上述3种方法并结合表面修饰可以得到组成丰富、功能多样的多孔中空微球,使其在活性物质封装、控释给药、核磁成像、电极材料、催化及环境等领域有着广泛的应用.在高度重视环境保护和强调可持续发展的当今时代,发展微生物自模板法制备多孔中空微球有着更为深远的现实意义.

References

[1]  1 Chiang W L, Ke C J, Liao Z X, et al. Pulsatile drug release from plga hollow microspheres by controlling the permeability of their walls with a magnetic field. Small, 2012, 8: 3584-3588
[2]  10 黄永利, 吕强, 李明忠, 等. 电场调控载药丝素蛋白微球的制备. 科学通报, 2011, 56: 1013-1018
[3]  13 Yadav M, Singh A K, Tsumori N, et al. Palladium silica nanosphere-catalyzed decomposition of formic acid for chemical hydrogen storage. J Mater Chem, 2012, 22: 19146-19150
[4]  24 Chen M, Ye C, Zhou S, et al. Recent advances in applications and performance of inorganic hollow spheres in devices. Adv Mater, 2013, 25: 5343-5351
[5]  25 Ke G J, Chen H Y, Su C Y, et al. Template-free solvothermal fabrication of hierarchical TiO2 hollow microspheres for efficient dye-sensitized solar cells. J Mater Chem A, 2013, 1: 13274-13282
[6]  28 Huang M, Wang Y. Synthesis of calcium phosphate microcapsules using yeast-based biotemplate. J Mater Chem, 2012, 22: 626
[7]  29 Zhou H, Fan T, Zhang D. Biotemplated materials for sustainable energy and environment: Current status and challenges. ChemSusChem, 2011, 4: 1344-1387
[8]  32 Porada C D, Almeida P G. Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Adv Drug Deliv Rev, 2010, 62: 1156-1166
[9]  33 Peer D. Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles. Adv Drug Deliv Rev, 2012, 64: 1738-1748
[10]  36 Muhammad A, Champeimont J, Mayr U B, et al. Bacterial ghosts as carriers of protein subunit and DNA-encoded antigens for vaccine applications. Expert Rev Vaccines, 2012, 11: 97-116
[11]  37 Brooks J, Shaw G. Sporopollenin: A review of its chemistry, palaeochemistry and geochemistry. Grana, 1978, 17: 91-97
[12]  38 Rowley J, Skvarla J. The elasticity of the exine. Grana, 2000, 39: 1-7
[13]  43 Wang Y, Liu Z, Han B, et al. Carbon microspheres with supported silver nanoparticles prepared from pollen grains. Langmuir, 2005, 21: 10846-10849
[14]  46 Hu B, Wang K, Wu L, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater, 2010, 22: 813-828
[15]  47 Kang S, Li X, Fan J, et al. Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Ind Eng Chem Res, 2012, 51: 9023-9031
[16]  48 Ni D Z, Wang L, Sun Y, et al. Amphiphilic hollow carbonaceous microspheres with permeable shells. Angew Chem Int Ed, 2010, 49: 4223-4227
[17]  49 Tan H, Zhang P, Wang L, et al. Multifunctional amphiphilic carbonaceous microcapsules catalyze water/oil biphasic reactions. Chem Commun, 2011, 47: 11903-11905
[18]  51 Liu J, Qiao S Z, Chen J S, et al. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem Commun, 2011, 47: 12578-12591
[19]  52 Liu J, Cheng J, Che R, et al. Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. ACS Appl Mater Interfaces, 2013, 5: 2503-2509
[20]  57 Liu J, Qiao S Z, Budi Hartono S, et al. Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew Chem-Int Edit, 2010, 49: 4981-4985
[21]  58 Bi L, Pan G. Facile and green fabrication of multiple magnetite nano-cores@void@porous shell microspheres for delivery vehicles. J Mater Chem A, 2014, 2: 3715-3718
[22]  65 Diego T A, Maillet L, Banoub J H, et al. Protein free microcapsules obtained from plant spores as a model for drug delivery: Ibuprofen encapsulation, release and taste masking. J Mater Chem B, 2013, 1: 707-713
[23]  66 Ganeshkumar M, Ponrasu T, Sathishkumar M, et al. Preparation of amphiphilic hollow carbon nanosphere loaded insulin for oral delivery. Colloid Surf B-Biointerfaces, 2013, 103: 238-243
[24]  67 Sun H, He W, Zong C, et al. Template-free synthesis of renewable macroporous carbon via yeast cells for high-performance supercapacitor electrode materials. ACS Appl Mater Interfaces, 2013, 5: 2261-2268
[25]  68 Yin Y, Li R, Li Z, et al. A facile self-template strategy to fabricate three-dimensional nitrogen-doped hierarchical porous carbon/graphene for conductive agent-free supercapacitors with excellent electrochemical performance. Electrochim Acta, 2014, 125: 330-337
[26]  70 Thio B J, Clark K K, Keller A A. Magnetic pollen grains as sorbents for facile removal of organic pollutants in aqueous media. J Hazard Mater, 2011, 194: 53-61
[27]  71 Dang Y, Bai B, He Y. Fabrication of TiO2@yeast-carbon hybrid composites with the raspberry-like structure and their synergistic adsorption-photocatalysis performance. J Nanomater, 2013, 851417
[28]  2 Park J U, Lee H J, Cho W, et al. Facile synthetic route for thickness and composition tunable hollow metal oxide spheres from silica-templated coordination polymers. Adv Mater, 2011, 23: 3161-3164
[29]  3 Bai M Y, Cheng Y J, Wickline S A, et al. Colloidal hollow spheres of conducting polymers with smooth surface and uniform, controllable sizes. Small, 2009, 5: 1747-1752
[30]  4 Zhao Y, Jiang L. Hollow micro/nanomaterials with multilevel interior structures. Adv Mater, 2009, 21: 3621-3638
[31]  5 赵趁, 陈爱政, 王士斌, 等. 超临界二氧化碳流体技术制备多孔微球研究进展. 科学通报, 2013, 58: 3459-3466
[32]  6 王小涛, 杨应奎, 杨志方, 等. 中空偶氮苯微球的合成及其光化学行为的研究. 科学通报, 2010, 55: 2539-2545
[33]  7 Guan G, Zhang Z, Wang Z, et al. Single-hole hollow polymer microspheres toward specific high-capacity uptake of target species. Adv Mater, 2007, 19: 2370-2374
[34]  8 de Cock L J, de Koker S, de Geest B G, et al. Polymeric multilayer capsules in drug delivery. Angew Chem Int Ed, 2010, 49: 6954-6973
[35]  9 方明, 高金龙, 王胜, 等. 壳聚糖微球对药物缓释作用的介电监测方法. 科学通报, 2010, 55: 867-874
[36]  11 Dong L, An D, Gong M, et al. Pegylated upconverting luminescent hollow nanospheres for drug delivery and in vivo imaging. Small, 2013, 9: 3235-3241
[37]  12 Yu L, Wu H B, Lou X W. Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv Mater, 2013, 25: 2296-2300
[38]  14 Bing Y F, Zeng Y, Liu C, et al. Assembly of hierarchical ZnSnO3 hollow microspheres from ultra-thin nanorods and the enhanced ethanol-sensing performances. Sens Actuator B-Chem, 2014, 190: 370-377
[39]  15 Zhang L H, Sun Q, Liu D H, et al. Magnetic hollow carbon nanospheres for removal of chromium ions. J Mater Chem A, 2013, 1: 9477-9483
[40]  16 Lou X W, Archer L A, Yang Z. Hollow micro-/nanostructures: Synthesis and applications. Adv Mater, 2008, 20: 3987-4019
[41]  17 樊华, 卞僮, 吴骊珠, 等. 自模板法制备介孔空心无机微/纳米结构. 高等学校化学学报, 2013, 34: 1-14
[42]  18 Sasidharan M, Nakashima K, Gunawardhana N, et al. Novel titania hollow nanospheres of size 28 ± 1 nm using soft-templates and their application for lithium-ion rechargeable batteries. Chem Commun, 2011, 47: 6921-6923
[43]  19 Zhai S, Manako Y, Yusa S, et al. Synthesis of nanometer-sized hollow calcium tungstate particles by using micelles of poly(styrene-b-acrylic acid-b-ethylene oxide) as a soft template. Chem Lett, 2013, 42: 735-737
[44]  20 Jin Z, Wang F, Wang F, et al. Metal nanocrystal-embedded hollow mesoporous TiO2 and ZrO2 microspheres prepared with polystyrene nanospheres as carriers and templates. Adv Funct Mater, 2013, 23: 2137-2144
[45]  21 Su Y, Yan R, Dan M, et al. Synthesis of hierarchical hollow silica microspheres containing surface nanoparticles employing the quasi-hard template of poly(4-vinylpyridine) microspheres. Langmuir, 2011, 27: 8983-8989
[46]  22 宋晟, 窦红静, 孙康. 无模板组装法制备的杂化微囊及其功能特性. 功能高分子学报, 2012, 24: 438-446
[47]  23 Cao L, Chen D, Caruso R A. Surface-metastable phase-initiated seeding and ostwald ripening: A facile fluorine-free process towards spherical fluffy core/shell, yolk/shell, and hollow anatase nanostructures. Angew Chem, 2013, 125: 11192-11197
[48]  26 Chiang W H, Hsu Y H, Tang F F, et al. Temperature/pH-induced morphological regulations of shell cross-linked graft copolymer assemblies. Polymer, 2010, 51: 6248-6257
[49]  27 Schnepp Z. Biopolymers as a flexible resource for nanochemistry. Angew Chem Int Ed, 2013, 52: 1096-1108
[50]  30 Schnepp Z, Yang W, Antonietti M, et al. Biotemplating of metal carbide microstructures: The magnetic leaf. Angew Chem Int Ed, 2010, 49: 6564-6566
[51]  31 Muzykantov V R. Drug delivery by red blood cells: Vascular carriers designed by mother nature. Expert Opin Drug Deliv, 2010, 7: 403-427
[52]  34 Kudela P, Koller V J, Lubitz W. Bacterial ghosts (bgs)——Advanced antigen and drug delivery system. Vaccine, 2010, 28: 5760-5767
[53]  35 Langemann T, Koller V J, Muhammad A, et al. The bacterial ghost platform system. Bioeng Bugs, 2010, 1: 326-336
[54]  39 Rowley J R, Skvarla J J, El-Ghazaly G. Transfer of material through the microspore exine-from the loculus into the cytoplasm. Botany, 2003, 81: 1070-1082
[55]  40 Barrier S, Diego T A, Thomasson M J, et al. Viability of plant spore exine capsules for microencapsulation. J Mater Chem, 2011, 21: 975-981
[56]  41 Diego T A, Cousson P, Raynaud E, et al. Sequestration of edible oil from emulsions using new single and double layered microcapsules from plant spores. J Mater Chem, 2012, 22: 9767-9773
[57]  42 Sakintuna B, Yürüm Y. Templated porous carbons: A review article. Ind Eng Chem Res, 2005, 44: 2893-2902
[58]  44 Xia Y, Zhang W, Xiao Z, et al. Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries. J Mater Chem, 2012, 22: 9209-9215
[59]  45 Xia Y, Xiao Z, Dou X, et al. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano, 2013, 7: 7083-7092
[60]  50 Guan Z, Liu L, He L, et al. Amphiphilic hollow carbonaceous microspheres for the sorption of phenol from water. J Hazard Mater, 2011, 196: 270-277
[61]  53 Ye Y, Kuai L, Geng B. A template-free route to a Fe3O4-Co3O4 yolk-shell nanostructure as a noble-metal free electrocatalyst for ORR in alkaline media. J Mater Chem, 2012, 22: 19132-19138
[62]  54 Hu S H, Chen Y Y, Liu T C, et al. Remotely nano-rupturable yolk/shell capsules for magnetically-triggered drug release. Chem Commun, 2011, 47: 1776-1778
[63]  55 Zhao W, Chen H, Li Y, et al. Uniform rattle-type hollow magnetic mesoporous spheres as drug delivery carriers and their sustained-release property. Adv Funct Mater, 2008, 18: 2780-2788
[64]  56 Guo L, Li J, Zhang L, et al. A facile route to synthesize magnetic particles within hollow mesoporous spheres and their performance as separable Hg2+ adsorbents. J Mater Chem, 2008, 18: 2733-2738
[65]  59 Georgianna D R, Mayfield S P. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 2012, 488: 329-335
[66]  60 Shi Y, Sheng J, Yang F, et al. Purification and identification of polysaccharide derived from chlorella pyrenoidosa. Food Chem, 2007, 103: 101-105
[67]  61 Wakil A, Mackenzie G, Diego T A, et al. Enhanced bioavailability of eicosapentaenoic acid from fish oil after encapsulation within plant spore exines as microcapsules. Lipids, 2010, 45: 645-649
[68]  62 Yilmaz E, Sezgin M, Yilmaz M. Enantioselective hydrolysis of rasemic naproxen methyl ester with sol-gel encapsulated lipase in the presence of sporopollenin. J Mol Catal B-Enzym, 2010, 62: 162-168
[69]  63 Hamad S A, Dyab A F, Stoyanov S D, et al. Encapsulation of living cells into sporopollenin microcapsules. J Mater Chem, 2011, 21: 18018-18023
[70]  64 Lorch M, Thomasson M J, Diego T A, et al. MRI contrast agent delivery using spore capsules: Controlled release in blood plasma. Chem Commun, 2009, 42: 6442-6444
[71]  69 Paunov V N, Mackenzie G, Stoyanov S D. Sporopollenin micro-reactors for in-situ preparation, encapsulation and targeted delivery of active components. J Mater Chem, 2007, 17: 609-612

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133