全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于图像单元对比度与统计特性的显著性检测

DOI: 10.3724/SP.J.1004.2013.01632, PP. 1632-1641

Keywords: 显著性区域检测,自适应图像分割,颜色对比度,空间统计特性

Full-Text   Cite this paper   Add to My Lib

Abstract:

?根据视觉注意机制,提出一种基于图像单元对比度与空间统计特性的可靠显著性区域检测方法.通过自适应的图像分割构造图像单元结构,以图像单元为基础,分别利用颜色对比度和空间统计特性两种模型进行显著性区域检测,最后,将两种模型的检测结果通过高斯模型进行结合,得到最终的显著性区域检测的结果.实验表明,该检测方法与现有的方法比较,具有更好的精度和召回率,能明显抑制复杂纹理和噪声,去除复杂背景的影响.

References

[1]  Wang Xiang-Yang, Yang Hong-Ying, Zheng Hong-Liang, Wu Jun-Feng. A color block-histogram image retrieval based on visual weight. Acta Automatica Sinica, 2010, 36(10): 1489-1492(王向阳, 杨红颖, 郑宏亮, 吴俊峰. 基于视觉权值的分块颜色直方图图像检索算法. 自动化学报, 2010, 36(10): 1489-1492)
[2]  Wang Yan-Qing, Ma Lei, Tian Yuan. State-of-the-art of ship detection and recognition in optical remotely sensed imagery. Acta Automatica Sinica, 2011, 37(9): 1029-1039(王彦情, 马雷, 田原. 光学遥感图像舰船目标检测与识别综述. 自动化学报, 2011, 37(9): 1029-1039)
[3]  Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Journal of Human Neurobiology, 1985, 4(4): 219-227
[4]  Harel J, Koch C, Perona P. Graph-based visual saliency. In: Proceedings of the 2006 MIT Annual Conference on Neural Information Processing Systems. Vancouver, Canada: The MIT Press, 2006. 545-552
[5]  Wang M, Konrad J, Ishwar P, Jing K, Rowley H A. Image saliency: from intrinsic to extrinsic context. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE, 2011. 417-424
[6]  Ma Y F, Zhang H J. Contrast-based image attention analysis by using fuzzy growing. In: Proceedings of the 11th ACM International Conference on Multimedia. Berkeley, USA: ACM, 2003. 374-381
[7]  Hou X D, Zhang L Q. Saliency detection: a spectral residual approach. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8
[8]  Achanta R, Hemami S, Estrada F J, Susstrunk S. Frequency-tuned salient region detection. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 1597-1604
[9]  Comaniciu D. An algorithm for data-driven bandwidth selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(2): 281-288
[10]  Arthur D, Vassilvitskii S. K-means++: the advantages of careful seeding. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, USA: ACM, 2007. 1027-1035
[11]  Zhang Su-Lan, Guo Ping, Zhang Ji-Fu, Hu Li-Hua. Automatic semantic image annotation with granular analysis method. Acta Automatica Sinica, 2012, 38(10): 688-697(张素兰, 郭平, 张继福, 胡立华. 图像语义自动标注及其粒度分析方法. 自动化学报, 2012, 38(10): 688-697)
[12]  Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259
[13]  Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 2376-2383
[14]  Cheng M M, Zhang G X, Mitra N J, Huang X L, Hu S M. Global contrast based salient region detection. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE, 2011. 409-416
[15]  Achanta R, Estrada F, Wils P, S{usstrunk S. Salient region detection and segmentation. In: Proceedings of the 6th International Conference on Computer Vision Systems. Berlin, Heidelberg: Springer-Verlag, 2008. 66-75
[16]  Zhai Y, Shah M. Visual attention detection in video sequences using spatiotemporal cues. In: Proceedings of the 14th Annual ACM International Conference on Multimedia. Santa Barbara, USA: ACM, 2006. 815-824
[17]  Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619
[18]  Grady L, Jolly M P, Seitz A. Segmentation from a box. In: Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona Spain: IEEE, 2011. 367-374
[19]  Feng Xin, Yang Dan, Zhang Ling. Saliency variation based quality assessment for packet-loss-impaired videos. Acta Automatica Sinica, 2011, 37(11): 1322-1331(冯欣, 杨丹, 张凌. 基于视觉注意力变化的网络丢包视频质量评估. 自动化学报, 2011, 37(11): 1322-1331)
[20]  Ding Zheng-Hu, Yu Ying, Wang Bin, Zhang Li-Ming. Visual attention-based ship detection in multispectral imagery. Journal of Computer-Aided Design & Computer Graphics, 2011, 23(3): 419-425(丁正虎, 余映, 王斌, 张立明. 选择性视觉注意机制下的多光谱图像舰船检测. 计算机辅助设计与图形学学报, 2011, 23(3): 419-425)

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133