全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2013 

雨生红球藻的光周期效应

DOI: 10.3724/SP.J.1259.2013.00168, PP. 168-173

Keywords: 虾青素,雨生红球藻,光照强度,光周期

Full-Text   Cite this paper   Add to My Lib

Abstract:

?雨生红球藻(Haematococcuspluvialis)是一种单细胞淡水绿藻,是自然界已知的中虾青素含量最高的生物物种。通过分析3种光照强度(70、120和300μmol·m–2·s–1)下雨生红球藻细胞形态、生长速率和虾青素含量的差异,对其光周期效应进行了研究。结果表明,不同光强下适宜雨生红球藻生长的光周期均为16小时光照/8小时黑暗,光强为120μmol·m–2·s–1时其细胞生长速率最大,为0.43d–1;细胞内虾青素含量随着光强和光照时间的增加而增加,在300μmol·m–2·s–1光强下连续光照15天后,藻细胞呈亮红色,平均直径为21.02μm,最大虾青素值达39.40pg·cell–1。

References

[1]  何振平, 王秀云, 樊晓旭, 王冬冬 (2007). 温度和光照对塔胞藻生长的影响. 水产科学 26, 218-221.
[2]  陆开形, 蒋霞敏, 翟兴文 (2002). 光照对雨生红球藻生长的影响. 河北渔业 6, 6-37.
[3]  王伟, 林均民, 金德祥 (1998). 藻类的光控发育.植物学通报 15, 31-39.
[4]  Fabregas J, Otero A, Maseda A, Dominguez A (2001). Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. Journal of Biotechnology 89, 65-71.
[5]  Kobayashi M, Kakizono T, Nishio N, Nagai S (1992). Effects of light intensity, light quality and illumination cycle on astaxanthin fromation in a green alga, Haematococcus pluvialis. J Ferment Bioeng 74, 61-63.
[6]  Kobayashi M, Kakizono T, Yamaguchi K (1992). Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J Ferment Bioeng 74, 17-20.
[7]  Lee YK, Soh CW (1991). Accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta). Journal of Phycology 27, 575-577.
[8]  Lorenz RT, Cysewski GR (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology 18, 160-167.
[9]  Lu F, Vonshan A (1994). Effect of temperature and irradiance on growth of Haematococcus pluvialis, J. physiol 30, 829-883.
[10]  Margalith PZ (1999). Production of ketocarotenoids by microalgae. Apl Microboil Biotechnol 51, 431-438.
[11]  应巧兰, 叶勇 (2002). 影响雨生红球藻797株生长和虾青素积累的某些因素. 应用与环境生物学报 8, 56-60.
[12]  袁丽娜, 宋炜, 肖琳, 王勤, 杨柳燕, 蒋丽娟 (2006). 附生假单胞菌存在下不同光照时间对铜绿微囊藻生长与磷代谢的影响. 生态与农村环境学报 22, 85-87.
[13]  Armbrust EV, Chisholm SW, Olson RJ (1990). Role of light and the cycle on the induction of sperma togenesis in a centric diatom. Journal of Phycology 26, 470-478.
[14]  Borowitzka MA, Huisman JM, Osborn A (1991). Culture of the astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. Journal of Applied Phycology 3, 295-304.
[15]  Boussiba S, Vonshak A (1991). Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant cell physiol 32, 1077-1082.
[16]  Dauta A, Devaux J, Piquemal F, Boumnich L (1990). Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia 207, 221-226.
[17]  Guerin M, Huntley ME, Olaizola M (2003). Haematococcus astaxanthin: applications for human health and nutrition. Trends in Biotechnology 21, 210-216.
[18]  Harker M (1996). Factor responsible for astaxanthin formation in the Chlorophyte Haematococcus pluvialis, Bioresource Technology 55, 207-214.
[19]  Kamath BS, Srikanta BM, Dharmesh SM, Sarada R, Ravishankar GA (2008). Ulcer preventive and antioxidative properties of astaxanthin from Haematococcus pluvialis. European Journal of Pharmacology 590, 387-395.
[20]  Sandesh KB, Vidhyavathi R, Sarada R, Ravishankar GA (2008). Enhancement of carotenoids by mutation and stress induced carotenogenic genes in Haematococcus pluvialis mutants. Bioresource Technology 99, 8667-8673.
[21]  Terry LA, Moss BL (1980). The effect of photoperiod on receptacle initiation in Ascophyllum nodosum. Le Journalol Br Phycol Journal 15, 291-301.
[22]  Tripathi U, Sarada R, Rao SR, Ravishankar GA (1999). Production of astaxanthin in Haematococcus pluvialis cultured in various media. Bioresource Technology 68, 197-199.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133