全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analytical solution of coupled non-linear second order differential equations in enzyme kinetics

DOI: 10.4236/ns.2011.36063, PP. 459-465

Keywords: Non-Linear Reaction Equations, Mathematical Modelling, Steady-State, Homotopy Perturbation Method, Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

The coupled system of non-linear second-order reaction differential equation in basic enzyme reaction is formulated and closed analytical ex-pressions for substrate and product concentra-tions are presented. Approximate analytical me-thod (He’s Homotopy perturbation method) is used to solve the coupled non-linear differential equations containing a non-linear term related to enzymatic reaction. Closed analytical expres-sions for substrate concentration, enzyme sub-strate concentration and product concentration have been derived in terms of dimensionless reaction diffusion parameters k, and us-ing perturbation method. These results are compared with simulation results and are found to be in good agreement. The obtained results are valid for the whole solution domain.

References

[1]  Rubinow, S.I. (1975) Introduction to Mathematical Biology. Wiley, New York.
[2]  Murray, J.D. (1989) Mathematical biology. Springer Verlag, Berlin.
[3]  Segel, L.A. (1980) Mathematical models in molecular and cellular biology. Cambridge University Press, Cambridge.
[4]  Roberts, D.V. (1977) Enzyme kinetics. Cambridge University Press, Cambridge.
[5]  Kasserra, H.P. and Laidler, K.J. (1970) Transient-phase studies of a trypsin-catalyzed reaction. Canadian Journal of Chemistry, 48, 1793-1802. doi:10.1139/v70-298
[6]  Pettersson, G. (1976) The transient-state kinetics of two-substrate enzyme systems operating by an ordered ternary-complex mechanism. European Journal of Biochemistry, 69, 273-278. doi:10.1111/j.1432-1033.1976.tb10883.x
[7]  Pettersson, G. (1978) A generalized theoretical treatment of the transient-state kinetics of enzymic reaction systems far from equilibrium. Acta Chemica Scandinavica - Series B, 32, 437-446. doi:10.3891/acta.chem.scand.32b-0437
[8]  Gutfreund, H. (1995) Kinetics for life sciences: Receptors, transmitters and catalysis. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511626203
[9]  Fersht, A.R. (1999) Structure and mechanism in protein science: A guide to enzyme catalysis and protein folding, Freeman, New York.
[10]  Silicio, F. and Peterson, M.D. (1961) Ratio errors in pseudo first order reactions. Journal of Chemical Education, 38, 576-577. doi:10.1021/ed038p576
[11]  Moore, J.W. and Pearson, R.G. (1981) Kinetics and Mechanism. Wiley, New York.
[12]  Corbett, J.F. (1972) Pseudo first-order kinetics. Journal of Chemical Education, 49, 663. doi:10.1021/ed049p663
[13]  Schnell, S. and, Maini, P.K. (2000) Enzyme kinetics at high enzyme concentration. Bulletin of Mathematical Biology, 62, 483-499. doi:10.1006/bulm.1999.0163
[14]  Schnell, S. and Mendoza, C. (2004) The condition for pseudo-first-order kinetics in enzymatic reaction is independent of the initial enzyme concentration. Journal of Biophysical Chemistry, 107, 165-174. doi:10.1016/j.bpc.2003.09.003
[15]  Meena, A., Eswari, A. and Rajendran, L. (2010) Mathematical modelling of enzyme kinetics reaction mechanism and analytical sloutions of non-linear reaction equations. Journal of Mathematical Chemistry, 48, 179-186. doi:10.1007/s10910-009-9659-5
[16]  Li, S.J. and Liu, Y.X. (2006) An improved approach to nonlinear dynamical system identification using pid neural networks. International Journal of Nonlinear Science and Numerical Simulation, 7, 177-182.
[17]  Mousa, M.M., Ragab, S.F. and Nturforsch, Z. (2008) Application of the homotopy perturbation method to linear and nonlinear schr?dinger equations. Zeitschrift für Naturforschung, 63, 140-144.
[18]  He, J.H. (1999) Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 178, 257-262.
[19]  He, J.H. (2003) Homotopy perturbation method: a new nonlinear analytical Technique. Applied Mathematics and Computation, vol.135, 73-79. doi:10.1016/S0096-3003(01)00312-5
[20]  He, J.H. (2003) A Simple perturbation approach to Blasius equation. Applied Mathematics and Computation, 140, 217-222. doi:10.1016/S0096-3003(02)00189-3
[21]  He, J.H. (2006) Some asymptotic methods for strongly nonlinear equations. International Journal of Modern Physics B, 20 (10), 1141-1199. doi:10.1142/S0217979206033796
[22]  He, J.H., Wu, C.G. and Austin, F. (2010) The variational iteration method which should be followed. Nonlinear Science Letters A, 1, 1-30.
[23]  He, J.H. (2003) A coupling method of a homotopy technique and a perturbation technique for non-linear problems. International Journal of Non-Linear Mechanics, 35, 37-43. doi:10.1016/S0020-7462(98)00085-7
[24]  Ganji, D.D., Amini, M. and Kolahdooz, A. (2008) Analytical investigation of hyperbolic equations via he’s methods. American Journal of Engineering and Applied Sciences, 1 (4), 399-407.
[25]  Loghambal, S. and Rajendran, L. (2010) Mathematical modeling of diffusion and kinetics of amperometric immobilized enzyme electrodes. Electrochimica Acta, 55, 5230-5238. doi:10.1016/j.electacta.2010.04.050
[26]  Meena, A. and Rajendran, L. (2010) Mathematical modeling of amperometric and potentiometric biosensors and system of non-linear equations – Homotopy perturbation approach. Journal of Electroanalytical Chemistry, 644, 50-59. doi:10.1016/j.jelechem.2010.03.027
[27]  Eswari, A. and Rajendran, L. (2010) Analytical solution of steady state current an enzyme modified microcylinder electrodes. Journal of Electroanalytical Chemistry, 648, 36-46. doi:10.1016/j.jelechem.2010.07.002

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413