全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2005 

β中尺度暴雨系统发生发展的一种可能物理机制Ⅱ.涡旋Rossby波的形成

DOI: 10.3878/j.issn.1006-9895.2005.06.02

Keywords: β中尺度暴雨系统,涡度守恒方程,Rossby波,数值试验

Full-Text   Cite this paper   Add to My Lib

Abstract:

使用二维中尺度横波型扰动的动力学方程组,探讨了该扰动的各种物理量场分布特征以及能量来源.结果表明,这种横波型的天气系统中扰动气压p'和扰动涡度ζ'在水平x方向上处于同位相或者反位相,扰动散度D'和扰动垂直速度w'在水平x方向上也处于同位相或者反位相,而扰动涡度ζ'与扰动散度D'在x方向上传播的位相相差π/2,只不过它们在垂直方向z上的分布结构有所不同.局地区域扰动发展的总能量来源主要是来自于平均场的有效位能和平均场的基流动能.最后,利用横波型扰动的总涡度守恒方程对涡旋Rossby波形成的物理机制做出了解释,并且提出了梅雨锋暴雨中β中尺度暴雨系统发生发展的一种可能物理过程.采用中尺度MM5模式的数值试验结果,也得到了与动力学理论上相一致的结论.

References

[1]  Ougra Y,Juang H M,Zhang K S,et al.Possible triggering mechanisms for severe storms in SESAME-AVE Ⅳ (9-10 May 1979).Bull.Amer.Meteor.Soc.,1982,63:503~515
[2]  Kuo H L.Baroclinic instabilities of linear and jet profiles in the atmosphere.J.Atmos.Sci.,1979,36:2360~2378
[3]  Kuo H L,Seitter K L.Instability of shearing geostrophic currents in neutral and partly unstable atmospheres.J.Atmos.Sci.,1985,42:331~345
[4]  Charney J G.The dynamics of long waves in a baroclinic westerly current.J.Atmos.Sci.,1947,4:136~162
[5]  Tokioka T.Supplement to non-geostrophic and non-hydrostatic stability of a baroclinic fluid and medium-scale disturbances on the fronts.J.Meteor.Soc.Japan,1971,49:129~132
[6]  张可苏.斜压气流的中尺度稳定性Ⅱ.横波型不稳定.气象学报,1988,46(4):385~392Zhang Kesu.On mesoscale instability of a baroclinic flow.Ⅱ.Transversal instability.Acta Meteor.Sinica (in Chinese),1988,46(4):385~392
[7]  沈新勇,倪允琪,张铭,等.β中尺度暴雨系统发生发展的一种可能物理机制Ⅰ.涡旋Rossby波的相速度.大气科学,2005,29(5):727~733Shen Xinyong,Ni Yunqi,Zhang Ming,et al.A possible mechanism of the genesis and development of meso-β rainstorm system.Part Ⅰ:Phase velocity of vortex Rossby waves.Chinese Journal of Atmospheric Sciences (in Chinese),2005,29 (5):727~733
[8]  余志豪.台风螺旋雨带--涡旋Rossby波.气象学报,2002,60(4):502~507Yu Zhihao.The spiral rain bands of tropical cyclone and vortex Rossby waves.Acta Meteorologica Sinica (in Chinese),2002,60 (4):502~507
[9]  MacDonald N J.The evidence for the existence of Rossby-like waves in the hurricane vortex.Tellus,1968,20:138~150
[10]  Guinn T A,Schubert W H.Hurricane spiral bands.J.Atmos.Sci.,1993,50:3380~3403
[11]  Smith G B Ⅱ,Montgomery M T.Vortex axisyrmmetrization:Dependence on azimuthal wave-number or asymmetric radial structure changes.Quart.J.Roy.Meteor.Soc.,1995,121:1615~1650
[12]  Montgomery,M T,Kallenbach R J.A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricane,Quart.J.Roy.Meteor.Soc.,1997,123,435~465.
[13]  Montgomery M T,Enagonio J.Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model.J.Atmos.Sci.,1998,55:3176~3207
[14]  Wang Yuqing.An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model-TCM3.Part Ⅰ:Model description and control experiment.Mon.Wea.Rev.,2001,129:1370~1394
[15]  Wang Yuqing.Vortex Rossby waves in a numerically simulated tropical cyclone.Part Ⅰ:Overall structure,potential vorticity,and kinetic energy budgets.J.Atmos.Sci.,2002,59:1213~1238

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133