全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质论评  2008 

风化壳40Ar/39Ar年代学研究意义:进展、问题与展望

Keywords: 风化壳,40Ar/39Ar年代学,次生矿物,古气候

Full-Text   Cite this paper   Add to My Lib

Abstract:

风化壳是不同地质历史时期风化作用的环境和物质记录,其组成、厚度、成熟度、保存程度等是古气候条件、区域构造活动性及地貌演化的直接反映。风化壳的形成年代是风化壳研究的关键内容,精确的风化壳年龄数据是查明一系列区域甚至全球事件的重要途径。风化壳中次生矿物(主要是钡硬锰矿族矿物和明矾石族矿物)的40Ar/39Ar年代学研究首次实现了对风化壳和风化作用的直接和精确定年,所获得的年龄数据为风化壳的形成演化、区域古气候古环境恢复、化学风化历史与矿床次生富集过程及新构造运动和山脉隆升历史等一系列重大地质问题的解决提供了重要途径。然而,风化壳中次生矿物定年存在的潜在问题及风化壳剖面取样的不完整性,有可能使风化壳的年龄分布变得相当复杂,导致对化学风化历史、风化壳形成过程和形成环境等的认识出现困难。为此,必须开展对风化壳的详细野外地质研究和精细取样,并综合采用多种先进测试手段,才能获得可靠的风化壳年龄数据。在对风化壳年龄数据进行解释时,还需要系统分析多种地质、环境资料(如古生物、盆地沉积物等),才可能获得有意义的地貌、构造和古气候信息。我国华南地区广泛分布的红色风化壳中含有丰富的钡硬锰矿族矿物,是研究该区新生代以来化学风化、大规模次生富集成矿及古气候古环境演变的理想对象。

References

[1]  崔之久 高全洲 等.古岩溶、夷平面与高原隆升[J].中国科学:D辑,1996,26(4):378-385.
[2]  崔之久 李德文 等.湘桂黔滇藏红色岩溶风化壳的性质与夷平面的形成环境[J].中国科学:D辑,:.
[3]  冯金良 崔之久 张威 刘耕年 朱立平.云贵高原红土性风化壳定年对象――锰结核的基础研究[J].海洋地质与第四纪地质,2003,23(3):45―54.
[4]  冯志刚 王世杰.中国南方红土古环境重建中存在的几个问题[J].山地学报,2003,21(6):641-646.
[5]  黄镇国 张伟强.中国南方红色风化壳[M].北京:海洋出版社,1996.124-126.
[6]  李德文 崔之久.岩溶夷平面演化与青藏高原隆升[J].第四纪研究,2004,24(1):58-66.
[7]  李德文 崔之久 等.风化壳研究的现状与展望[J].地球学报,:.
[8]  李吉均 方小敏.晚新生代黄河上游地貌演化与青藏高原隆起[J].中国科学:D辑,:.
[9]  Feng Y and Vasconcelos P. 2001. Quaternary continental weathering geochronology by laser-heating ^40Ar/^39Ar analysis of supergene cryptomelane. Geology, 29 (7) : 635-638.
[10]  Girard J P, Razanadranorosoa D, Freyssinet P. 1997. Laser oxygen isotope analysis of weathering goethite from the lateritic profile of Yaou, French Guiana: paleoweathering and paleoclimatic implications. Applied Geochemistry, 12 (2) : 163-174.
[11]  Hautmann S and Lippolt H J. 2000. ^40Ar/^39Ar dating of central European K--Mn oxides a chronological framework of supergene alteration processes during the Neogene. Chemical Geology, 170: 37-80.
[12]  Li Jianwei, Vaseoneelos P, Duzgoren-Aydin N, Yan Dairong, Zhang Wei, Deng Xiaodong, Zhao Xinfu, Zeng Zhongping, Hu Ming\\'an. 2007a. Neogene weathering and supergene manganese enrichment in subtropical South China: An ^40Ar/39Ar approach and paleoelimatie significance. Earth and Planetary Science Letters, 256 (3-4): 389-402.
[13]  Li Jianwei, Vasconcelos P, Zhang Wei, Deng Xiaodong, Duzgoren- Aydin N, Yan Dairong, Zhang Jianqian, Hu Mingtan. 2007b.Timing and duration of supergene mineralization at the Xinrong manganese deposit, western Guangdong Province, South China: cryptomelane ^40Ar/^39Ar dating. Mineralium Deposita, 42 (4): 361-383.
[14]  Marsh T M, Einaudi M T, McWilliams M. 1997. ^40Ar/^39Ar geochronology of Cu-Au and Au-Ag mineralization in the Potrerillos District, Chile. Econimic Geology, 92 : 784- 806.
[15]  Mote T I, Becker T A, Renne P, Brimhall G H. 2001. Chronology of Exotic Mineralization at El Salvador, Chile, by ^40Ar/^39Ar Dating of Copper Wad and Supergene Alunite. Economic Geology, 96 (2): 351-366.
[16]  Nikerk H S, Gutzmer J, Beukes N J, Phillips D, Kiviets G B. 1999. An ^40Ar/^39Ar age of supergene K--Mn oxyhydroides in a post-Gondwana soil profile on the Highveld of South Afica. South African Journal of Science, 95: 450-454.
[17]  Quang C X, Clark A H, Lee J K W, Guillen B J. 2003. ^40Ar/^39Ar Ages of Hypogene and Supergene Mineralization in The Cerro Verde-Santa Rosa Porphyry Cu-Mo Cluster, Arequipa, Peru. Economic Geology, 98 : 1683-1696.
[18]  Quang C X, Clark A H, Lee J K W, Hawkes N. 2005. Response of Supergene Processes to Episodic Cenozoic Uplift, Pediment Erosion, and Ignimbrite Eruption in the Porphyry Copper Province of Southern Peru. Economic Geology, 100 (1) : 87-114.
[19]  Rech J A, Currie B S, Michalski G, Cowan A M. 2006. Neogene climate change and uplift in the Atacama Desert, Chile. Geology, 34 (9): 761-764.
[20]  Robert C and Chamley H. 1987. Cenozoic evolution of continental humidity and paleoenvironment, deduced from the kaolinite content of oceanic sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 60 (1-2): 171-187.
[21]  Ruffet G, Innocent C, Michard A, Feraud G, Beauvais A, Nahon D. 1996. A geochronolgical ^40Ar/^39Ar and 87Rb/87Sr study of K-Mn oxides from the weathering seqence of Azul, Brazil. Geochimca et Cosmochimica Acta, 60 (12): 2219-2232.
[22]  Shanin L L, Ivanov I B, Shipulin F K. 1968. The possible use of alunite in K Ar geoehronometry. Geokhimiya, 1: 109-111.
[23]  Thornber M R. 1992. The chemical mobility and transport of elements in the weathering environment. Handbook of Exploration Geochemistry, 4: 79-96.
[24]  Varentsov I M. 1996. Manganese ores of supergene zone, geochemistry of formation. Solid Earth Sciences Library, 8: 1 -342.
[25]  Vasconcelos P M. 1998. Geochronology of Wethering in Mount Isa and Charter Towers Regions, North Queensland Report of CRC LEME project 147, Brisbane, 1- 184.
[26]  崔之久 李德文 等.夷平面研究的再评述[J].科学通报,:.
[27]  李建威 颜代容 VasconcelosPM Duzgoren-AydinNS 胡明安 陈木宏.表生钾锰矿物^40Ar/^39Ar年代学及其古气候意义[J].地学前缘,2004,11(2):589-598.
[28]  席承藩.论华南红色风化壳[J].第四纪研究,1991,(1):1-8.
[29]  朱显谟.中国南方的红土与红色风化壳[J].第四纪研究,:.
[30]  朱照宁 张国梅.华南热带红土期及风化矿物初步研究[J].第四纪研究,1991,1:18-28.
[31]  Alpers C N and Brlmhall G H. 1988. Middle Miocene climatic change in the Atacama Desert, northern Chile, evidence from supergene mineralization at La Escondida, with Suppl. Data 88 -21. GSA Bulletin, 100 (10): 1640-1656.
[32]  Alpers C N and Brimhall G H. 1989. Paleohydrologic evolution and geochemical dynamics of cumulative supergene metal enrichment at La Escondida, Atacama Desert, northern Chile. Economic Geology, 84 (2): 229-255.
[33]  Arancibia G, Matthews S J, Perez D A C. 2006. K-Ar and ^40Ar/^39Ar geochronology of supergene processes in the Atacama Desert, Northern Chile: tectonic and climatic relations. Journal of the Geological Society, 163 (1) : 107-118.
[34]  Bird M I, Andrew A S, Chivas A R, Lock D E. 1989. An isotopic study of surficial alunite in Australia: 1. Hydrogen and sulphur isotopes. Geochimica et Cosmochimica Acta, 53 (12): 3223- 3237.
[35]  Bouzari F and Clark A H. 2002. Anatomy, Evolution, and Metallogenic Significance of the Supergene Orebody of the Cerro Colorado Porphyry Copper Deposit, I Region, Northern Chile. Economic Geology, 97 (8), 1701-1740.
[36]  Carmo I O and Vasconcelos P. 2004. Geochronological evidence for pervasive Miocene weathering, Minas Gerais, Brazil. Earth Surface Processes and Landforms, 29 (11) : 1303-1320.
[37]  Carmo I O and Vasconcelos P M. 2006. ^40Ar/^39Ar geochronology constraints on late miocene weathering rates in Minas Gerais, Brazil. Earth and Planetary Science Letters, 241 (1-2) : 80-94.
[38]  Chukhrov F V, Shanin L L, Yermilova H D. 1966. Fesibility of absolute age determination for potassium-carrying manganese minerals. International Geology Review, 8: 278-280.
[39]  Craig M A. 2001. Regolith mapping for geochemical exploration in the Yilgarn Craton, Western Australia. Geochemistry: Exploration, Environment, Analysis, 1 (4): 383-390.
[40]  Dammer D, Chivas A R, McDougall I. 1996. Isotopic dating of supergene manganese oxides from the Groote Eylandt Deposit, Northern Territory, Australia. Economic Geology, 91 (2): 386 -401.
[41]  Dammer D, McDougall I, Chivas A R. 1999. Timing of weathering-induced alteration of manganese deposits in Western Australia, evidence from K/Ar and ^40Ar/^39 Ar dating. Economic Geology, 94 (1): 87-108.
[42]  Deike R G, Granina L Z, Callender E C, McGee J J. 1997. Formation of ferric iron crusts in Quaternary sediments of Lake Baikal, Russia, and implications for paleoclimate. Marine Geology, 139 (1-4): 21-46.
[43]  Dunai T J, Lopez G A G, Juez-Larre J. 2005. Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology, 33 (4) : 321-324.
[44]  Erieksen G E. 1981. Geology and Origin of the Chilean nitrate deposits. U. S. Geological Survey Professional Paper, 1188, 1 -37.
[45]  Henocque O, Ruffet G, Colin F, Feraud G, 1998. ^40Ar/^39Ar dating of West African lateritic cryptomelanes. Geochimica et Cosmochimica Acta, 62 (16): 2739-2756.
[46]  Hodson M E, Langan S J and Wilson M J. 1996. A sensitivity analysis of the PROFILE model in relation to the calculation of soil weathering rates. Applied Geochemistry, 11 (6): 835- 844.
[47]  Horvath Z, Varga B, Mindszenty A. 2000. Micromorphological and chemical complexities of a lateritic profile from basalt (Jos Plateau, central Nigeria). Chemical Geology, 170 (1-4): 81 -93.
[48]  Lamb S and Davis P. 2003. Cenozoic climate change as a possible cause for the rise of the Andes. Nature, 425 (6960) : 792-797.
[49]  Li Jianwei and Vasconcelos P M. 2002. Cenozoic continental weathering and its implications for the palaeoclimate: evidence from ^40At/^39 Ar geochronology of supergene K/Mn oxides in Mt Tabor, central Queensland, Australia. Earth and Planetary Science Letters, 200 (1-2): 223-239.
[50]  Sillitoe R H and McKee E H. 1996. Age of supergene oxidation and enrichment in the Chilean porphyry copper province. Economic Geology, 91 (1): 164-179.
[51]  Singh B and Cornelius M. 2006. Geochemistry and mineralogy of the regolith profile over the Aries kimberlite pipe, Western Australia. Geochem. , 6 (4): 311-323.
[52]  Sturt B A, Dalland A, Mitchell B, Mitchell J L. 1979. The age of the sub Mid-Jurassic tropical weathering profile of Andoya,northern Norway, and the implications for the late Palaeozoic palaeography in the North Atlantic region. Geologische Rundschau, 68 (2) : 523-542.
[53]  Taylor A and Blum J D. 1995. Relation between soil age and silicate weathering rates determined from the chemical evolution of a glacial chronosequence. Geology, 23 (11): 979-982.
[54]  Vasconcelos P M. 1999. K-Ar and ^40Ar/^39Ar Geochronology of Weathering Processes. Annual Review of Earth and Planetary Sciences, 27: 1831-229.
[55]  Vasconcelos P M, Becker T A, Renne P R, Brimhall G H. 1992. Age and Duration of Weathering by ^40K-^40Ar and ^40Ar/^39Ar Analysis of Potassium--Manganese Oxides. Science, 258 (5081) : 451-455.
[56]  Vasconcelos P M, Brimhall G H, Becker T A, Renne P R. 1994a. ^40Ar/^39Ar analysis of supergene jarosite and alunite~ Implications to the paleoweathering history of the western USA and West Africa. Geochimica et Cosmochimica Acta, 58 (1) : 401-420.
[57]  Vasconcelos P M, Renne P R, Brimhall G H, Becker T A. 1994b. Direct dating of weathering phenomena by ^40Ar/^39Ar and K-Ar analysis of supergene K-Mn oxides. Geochimica et Cosmochimica Acta, 58 (6): 1635-1665.
[58]  Vasconcelos P M, Renne P R, Becker T A. 1994c. Mechanisms and kinetis of atmospheric, radiogenic, and nucleogenic argon release from cryptomelane during ^40Ar/^39Ar analsis. Geochimca et Cosmochimica Acta, 59 (10), 2057-2070.
[59]  Vasconcelos P M and Conroy M. 2003. Geochronology of weathering and landscape evolution, Dugald River valley, NW Queensland, Australia. Geochimica et Cosmochimica Acta, 67 (16) : 2913-2930.
[60]  Webb A W and McDougall I. 1968. The geochronology of the igneous rocks of eastern Queensland. Journal of the Geological Society of Australia, 15, Part 2: 313-343.
[61]  Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292 (5517): 686-693.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133