全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparative Phylogeography of the Coral Triangle and Implications for Marine Management

DOI: 10.1155/2011/396982

Full-Text   Cite this paper   Add to My Lib

Abstract:

Extreme concentration of marine biodiversity and exploitation of marine resources in the Coral Triangle pose challenges to biogeographers and resource managers. Comparative phylogeography provides a powerful tool to test biogeographic hypotheses evoked to explain species richness in the Coral Triangle. It can also be used to delineate management units for marine resources. After about a decade of phylogeographical studies, patterns for the Coral Triangle are emerging. Broad connectivity in some species support the notion that larvae have maintained gene flow among distant populations for long periods. Other phylogeographic patterns suggest vicariant events resulting from Pleistocene sea level fluctuations, which have, at least occasionally, resulted in speciation. Divergence dates ranging back to the Miocene suggest that changing land configurations may have precipitated an explosion of species diversification. A synthesis of the marine phylogeographic studies reveals repeated patterns that corroborate hypothesized biogeographic processes and suggest improved management schemes for marine resources. 1. Introduction The Coral Triangle is well recognized as the global apogee of marine biodiversity, with species richness incrementally decreasing from this region eastward across the Pacific Ocean and westward across the Indian Ocean [1, 2]. This center encompasses much of Indonesia, Malaysia, the Philippines, Brunei, Timor L’Este, Papua New Guinea, and the Solomon Islands and is also variously referred to as the East Indies Triangle (e.g., [3–5]), the Indonesian and Philippine Region [6], the Indo-Malay-Philippine Archipelago [7, 8], and a variety of other names [2]. It has also been referred to as the Indo-Australian Archipelago (e.g., [9, 10]) although this is a misnomer for the Coral Triangle biodiversity hotspot, since it does not include Australia [1] and has geological origins transcending Eurasian and Indian‐Australian tectonic elements [11]. In addition to its biodiversity reputation, the Coral Triangle is also unfortunately well known for peaks in threats to marine biodiversity, particularly for reef-building corals and coral reef fishes [12–14] and the need for improved marine resource management [1]. From a geological perspective, the Coral Triangle hotspot is relatively young [15]. Throughout the Paleogene ( 65–23?mya), tropical ocean formed an essentially continuous belt around the globe, with the Atlantic and Pacific basins connected by the Tethys Sea. During much of this time, the global center of marine biodiversity was found in the western

References

[1]  J. E. N. Veron, L. M. DeVantier, E. Turak, et al., “Delineating the coral triangle,” Galaxea, vol. 11, no. 2, pp. 91–100, 2009.
[2]  B. W. Hoeksema, “Delineation of the Indo-Malayan centre of maximum marine biodiversity: the coral triangle,” in Biogeography, Time and Place: Distributions, Barriers and Islands, W. Renema, Ed., chapter 5, pp. 117–178, Springer, Dordrecht, The Netherlands, 2007.
[3]  J. E. Randall, “Zoogeography of shore fishes of the Indo-Pacific region,” Zoological Studies, vol. 37, no. 4, pp. 227–268, 1998.
[4]  F. Santini and R. Winterbottom, “Historical biogeography of Indo-western Pacific coral reef biota: is the Indonesian region a centre of origin?” Journal of Biogeography, vol. 29, no. 2, pp. 189–205, 2002.
[5]  J. C. Briggs, “Extinction and replacement in the Indo-West Pacific Ocean,” Journal of Biogeography, vol. 26, no. 4, pp. 777–783, 1999.
[6]  C. Mora, P. M. Chittaro, P. F. Sale, J. P. Kritzer, and S. A. Ludsin, “Patterns and processes in reef fish diversity,” Nature, vol. 421, no. 6926, pp. 933–936, 2003.
[7]  D. R. Bellwood and P.C. Wainwright, “The history and biogeography of fishes on coral reefs,” in Coral Reef Fishes, P. F. Sale, Ed., pp. 5–32, Academic Press, New York, NY, USA, 2002.
[8]  K. E. Carpenter and V. G. Springer, “The center of the center of marine shore fish biodiversity: the Philippine Islands,” Environmental Biology of Fishes, vol. 72, no. 4, pp. 467–480, 2005.
[9]  D. R. Bellwood and T. P. Hughes, “Regional-scale assembly rules and biodiversity of coral reefs,” Science, vol. 292, no. 5521, pp. 1532–1534, 2001.
[10]  D. R. Bellwood and C. P. Meyer, “Endemism and evolution in the Coral Triangle: a call for clarity,” Journal of Biogeography, vol. 36, no. 10, pp. 2010–2012, 2009.
[11]  R. Hall, “The plate tectonics of Cenozoic SE Asia and the distribution of land and sea,” in Biogoegraphy and Geological Evolution of SE Asia, R. Hall and J. D. Holloway, Eds., pp. 99–131, Backhuys Publishers, Leiden, The Netherlands, 1998.
[12]  L. Burke, L. Selig, and M. Spalding, Reefs at Risk in Southeast Asia, The World Resources Institute, Washington, DC, USA, 2002.
[13]  C. M. Roberts, C. J. McClean, J. E. N. Veron et al., “Marine biodiversity hotspots and conservation priorities for tropical reefs,” Science, vol. 295, no. 5558, pp. 1280–1284, 2002.
[14]  K. E. Carpenter, M. Abrar, G. Aeby et al., “One-third of reef-building corals face elevated extinction risk from climate change and local impacts,” Science, vol. 321, no. 5888, pp. 560–563, 2008.
[15]  G. J. Vermeij, “Community assembly in the sea: geologic history of the living shore biota,” in Marine Community Ecology, M. Bertness, S. D. Gaines, and M. E. Hay, Eds., Sinauer Associates, Sunderland, Mass, USA, 2001.
[16]  M. E. J. Wilson and B. R. Rosen, “Implications of paucity of corals in the Paleogene of SE Asia: plate tectonics or Centre of Origin-,” in Biogeography and Geological Evolution of SE Asia, R. Hall and J. D. Holloway, Eds., pp. 165–195, Backhuys Publishers, Leiden, The Netherlands, 1998.
[17]  W. Renema, D. R. Bellwood, J. C. Braga et al., “Hopping hotspots: global shifts in marine biodiversity,” Science, vol. 321, no. 5889, pp. 654–657, 2008.
[18]  M. Harzhauser, A. Kroh, O. Mandic et al., “Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway,” Zoologischer Anzeiger, vol. 246, no. 4, pp. 241–256, 2007.
[19]  C. C. Wallace and B. R. Rosen, “Diverse staghorn corals (Acropora) in high-latitude Eocene assemblages: implications for the evolution of modern diversity patterns of reef corals,” Proceedings of the Royal Society Biological Sciences, vol. 273, no. 1589, pp. 975–982, 2006.
[20]  M. A. Frey and G. J. Vermeij, “Molecular phylogenies and historical biogeography of a circumtropical group of gastropods (Genus: Nerita): implications for regional diversity patterns in the marine tropics,” Molecular Phylogenetics and Evolution, vol. 48, no. 3, pp. 1067–1086, 2008.
[21]  M. A. E. Malaquias and D. G. Reid, “Tethyan vicariance, relictualism and speciation: evidence from a global molecular phylogeny of the opisthobranch genus Bulla,” Journal of Biogeography, vol. 36, no. 9, pp. 1760–1777, 2009.
[22]  M. Harzhauser, O. Mandic, W. E. Piller, M. Reuter, and A. Kroh, “Tracing back the origin of the indo-pacific mollusc fauna: basal tridacninae from the oligocene and miocene of the sultanate of oman,” Palaeontology, vol. 51, no. 1, pp. 199–213, 2008.
[23]  R. Hall, “Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations,” Journal of Asian Earth Sciences, vol. 20, no. 4, pp. 353–431, 2002.
[24]  S. O. Klanten, L. van Herwerden, J. H. Choat, and D. Blair, “Patterns of lineage diversification in the genus Naso (Acanthuridae),” Molecular Phylogenetics and Evolution, vol. 32, no. 1, pp. 221–235, 2004.
[25]  S. T. Williams and D. G. Reid, “Speciation and diversity on tropical rocky shores: a global phylogeny of snails of the genus Echinolittorina,” Evolution, vol. 58, no. 10, pp. 2227–2251, 2004.
[26]  P. H. Barber and D. R. Bellwood, “Biodiversity hotspots: evolutionary origins of biodiversity in wrasses (Halichoeres: Labridae) in the Indo-Pacific and new world tropics,” Molecular Phylogenetics and Evolution, vol. 35, no. 1, pp. 235–253, 2005.
[27]  C. I. Read, D. R. Bellwood, and L. van Herwerden, “Ancient origins of Indo-Pacific coral reef fish biodiversity: a case study of the leopard wrasses (Labridae: Macropharyngodon),” Molecular Phylogenetics and Evolution, vol. 38, no. 3, pp. 808–819, 2006.
[28]  S. T. Williams and T. F. Duda Jr., “Did tectonic activity stimulate Oligo-Miocene speciation in the Indo-West Pacific?” Evolution, vol. 62, no. 7, pp. 1618–1634, 2008.
[29]  P. H. Barber, M. V. Erdmann, and S. R. Palumbi, “Comparative phylogeography of three codistributed stomatopods: origins and timing of regional lineage diversification in the coral Triangle,” Evolution, vol. 60, no. 9, pp. 1825–1839, 2006.
[30]  E. D. Crandall, M. E. Jones, M. M. Mu?oz, B. Akinronbi, M. V. Erdmann, and P. H. Barber, “Comparative phylogeography of two seastars and their ectosymbionts within the Coral Triangle,” Molecular Ecology, vol. 17, no. 24, pp. 5276–5290, 2008.
[31]  M. A. Juinio-Me?ez, R. M. Magsino, R. Ravago-Gotanco, and E. T. Yu, “Genetic structure of Linckia laevigata and Tridacna crocea populations in the Palawan shelf and shoal reefs,” Marine Biology, vol. 142, no. 4, pp. 717–726, 2003.
[32]  C. Vogler, J. Benzie, H. Lessios, P. Barber, and G. W?rheide, “A threat to coral reefs multiplied? Four species of crown-of-thorns starfish,” Biology Letters, vol. 4, no. 6, pp. 696–699, 2008.
[33]  E. D. Crandall, M. A. Frey, R. K. Grosberg, and P. H. Barber, “Contrasting demographic history and phylogeographical patterns in two Indo-Pacific gastropods,” Molecular Ecology, vol. 17, no. 2, pp. 611–626, 2008.
[34]  T. S. DeBoer, M. D. Subia, Ambariyanto, M. V. Erdmann, K. Kovitvongsa, and P. H. Barber, “Phylogeography and limited genetic connectivity in the endangered boring giant clam across the coral triangle,” Conservation Biology, vol. 22, no. 5, pp. 1255–1266, 2008.
[35]  M. Kochzius and A. Nuryanto, “Strong genetic population structure in the boring giant clam, Tridacna crocea, across the Indo-Malay Archipelago: implications related to evolutionary processes and connectivity,” Molecular Ecology, vol. 17, no. 17, pp. 3775–3787, 2008.
[36]  R. G. Ravago-Gotanco, R. M. Magsino, and M. A. Juinio-Me?ez, “Influence of the North Equatorial Current on the population genetic structure of Tridacna crocea (Mollusca: Tridacnidae) along the eastern Philippine seaboard,” Marine Ecology Progress Series, vol. 336, pp. 161–168, 2007.
[37]  A. Nuryanto and M. Kochzius, “Highly restricted gene flow and deep evolutionary lineages in the giant clam Tridacna maxima,” Coral Reefs, vol. 28, no. 3, pp. 607–619, 2009.
[38]  D. G. Reid, K. Lal, J. MacKenzie-Dodds, F. Kaligis, D. T. J. Littlewood, and S. T. Williams, “Comparative phylogeography and species boundaries in Echinolittorina snails in the central Indo-West Pacific,” Journal of Biogeography, vol. 33, no. 6, pp. 990–1006, 2006.
[39]  A. Schiller, P. R. Oke, G. Brassington et al., “Eddy-resolving ocean circulation in the Asian-Australian region inferred from an ocean reanalysis effort,” Progress in Oceanography, vol. 76, no. 3, pp. 334–365, 2008.
[40]  H. S. Ladd, “Origin of the Pacific island molluscan fauna,” American Journal of Science, vol. 258-A, pp. 137–150, 1960.
[41]  P. Jokiel and F. J. Martinelli, “The vortex model of coral reef biogeography,” Journal of Biogeography, vol. 19, no. 4, pp. 449–458, 1992.
[42]  J. C. Briggs, “Coincident biogeographic patterns: Indo-West Pacific Ocean,” Evolution, vol. 53, no. 2, pp. 326–335, 1999.
[43]  J. C. Briggs, “Modes of speciation: Marine Indo-West Pacific,” Bulletin of Marine Science, vol. 65, no. 3, pp. 645–656, 1999.
[44]  W. O. McMillan and S. R. Palumbi, “Concordant evolutionary patterns among Indo-West Pacific Butterflyfishes,” Proceedings of the Royal Society B, vol. 260, no. 1358, pp. 229–236, 1995.
[45]  M. A. Juinio-Me?ez, J. Macaranas, and E. D. Gomez, “Sympatric occurrence of two subspecies of Panulirus longipes Milne Edwards, 1868 (Decapoda: Palinuridae) and biochemical evidence of interbreeding,” Memoirs of the Queensland Museum, vol. 31, p. 209, 1991.
[46]  R. G. Ravago and M. A. Juinio-Me?ez, “Phylogenetic position of the striped-legged forms of Panulirus longipes (A. Milne-Edwards, 1868) (Decapoda, Palinuridae) inferred from mitochondrial DNA sequences,” Crustaceana, vol. 75, no. 9, pp. 1047–1059, 2002.
[47]  L. A. Rocha, M. T. Craig, and B. W. Bowen, “Phylogeography and the conservation of coral reef fishes,” Coral Reefs, vol. 26, no. 3, pp. 501–512, 2007.
[48]  S. A. Lourie and A. C. J. Vincent, “A marine fish follows Wallace's Line: the phylogeography of the three-spot seahorse (Hippocampus trimaculatus, Syngnathidae, Teleostei) in Southeast Asia,” Journal of Biogeography, vol. 31, no. 12, pp. 1975–1985, 2004.
[49]  T. Hanebuth, K. Stattegger, and P. M. Grootes, “Rapid flooding of the Sunda Shelf: a late-glacial sea-level record,” Science, vol. 288, no. 5468, pp. 1033–1035, 2000.
[50]  S. R. Palumbi, “Molecular biogeography of the Pacific,” Coral Reefs, vol. 16, no. 1, pp. S47–S52, 1997.
[51]  P. H. Barber, “The challenge of understanding the Coral Triangle biodiversity hotspot,” Journal of Biogeography, vol. 36, no. 10, pp. 1845–1846, 2009.
[52]  D. Halas and R. Winterbottom, “A phylogenetic test of multiple proposals for the origins of the East Indies coral reef biota,” Journal of Biogeography, vol. 36, no. 10, pp. 1847–1860, 2009.
[53]  M. C. M. D. Malay and G. Paulay, “Peripatric speciation drives diversification and distributional pattern of reef hermit crabs (Decapoda: Diogenidae: Calcinus),” Evolution, vol. 64, no. 3, pp. 634–662, 2010.
[54]  J. A. H. Benzie, E. Ballment, A. T. Forbes, et al., “Mitochondrial DNA variation in Indo-Pacific populations of the giant tiger prawn, Penaeus monodon,” Molecular Ecology, vol. 11, no. 12, pp. 2553–2569, 2002.
[55]  J. Timm, M. Figiel, and M. Kochzius, “Contrasting patterns in species boundaries and evolution of anemonefishes (Amphiprioninae, Pomacentridae) in the centre of marine biodiversity,” Molecular Phylogenetics and Evolution, vol. 49, no. 1, pp. 268–276, 2008.
[56]  G. J. Vermeij, “The dispersal barrier in the tropical Pacific: implications for molluscan speciation and extinction,” Evolution, vol. 41, no. 5, pp. 1046–1058, 1987.
[57]  G. Paulay, “Effects of late Cenozoic sea-level fluctuations on the bivalve faunas of tropical oceanic islands,” Paleobiology, vol. 16, no. 4, pp. 415–434, 1990.
[58]  G. Paulay, “Biodiversity on oceanic islands: its origin and extinction,” American Zoologist, vol. 34, no. 1, pp. 134–144, 1994.
[59]  C. Fauvelot, G. Bernardi, and S. Planes, “Reductions in the mitochondrial DNA diversity of coral reef fish provide evidence of population bottlenecks resulting from holocene sea-level change,” Evolution, vol. 57, no. 7, pp. 1571–1583, 2003.
[60]  E. D. Crandall, J. R. Taffel, and P. H. Barber, “High gene flow due to pelagic larval dispersal among South Pacific archipelagos in two amphidromous gastropods (Neritomorpha: Neritidae),” Heredity, 2009.
[61]  L. A. Rocha, C. R. Rocha, D. R. Robertson, and B. W. Bowen, “Comparative phylogeography of Atlantic reef fishes indicates both origin and accumulation of diversity in the Caribbean,” BMC Evolutionary Biology, vol. 8, no. 1, article 157, 2008.
[62]  J. C. Briggs, “Diversity, endemism and evolution in the Coral Triangle,” Journal of Biogeography, vol. 36, no. 10, pp. 2008–2010, 2009.
[63]  G. Paulay and C. Meyer, “Diversification in the tropical Pacific: comparisons between marine and terrestrial systems and the importance of founder speciation,” Integrative and Comparative Biology, vol. 42, no. 5, pp. 922–934, 2002.
[64]  G. Paulay and C. Meyer, “Dispersal and divergence across the greatest ocean region: do larvae matter?” Integrative and Comparative Biology, vol. 46, no. 3, pp. 269–281, 2006.
[65]  M. J. Hickerson and C. P. Meyer, “Testing comparative phylogeographic models of marine vicariance and dispersal using a hierarchical Bayesian approach,” BMC Evolutionary Biology, vol. 8, no. 1, article 322, 2008.
[66]  J. C. Avise, Phylogeography—The History and Formation of Species, Harvard University Press, Cambridge, Mass, USA, 2000.
[67]  M. J. Hickerson, B. C. Carstens, J. Cavender-Bares et al., “Phylogeography's past, present, and future: 10 years after Avise, 2000,” Molecular Phylogenetics and Evolution, vol. 54, no. 1, pp. 291–301, 2010.
[68]  C. Moritz, “Defining 'evolutionarily significant units' for conservation,” Trends in Ecology and Evolution, vol. 9, no. 10, pp. 373–375, 1994.
[69]  J.-P. Féral, “How useful are the genetic markers in attempts to understand and manage marine biodiversity?” Journal of Experimental Marine Biology and Ecology, vol. 268, no. 2, pp. 121–145, 2002.
[70]  S. R. Palumbi, “Population genetics, demographic connectivity, and the design of marine reserves,” Ecological Applications, vol. 13, no. 1, pp. S146–S158, 2003.
[71]  R. S. Waples, A. E. Punt, and J. M. Cope, “Integrating genetic data into management of marine resources: how can we do it better?” Fish and Fisheries, vol. 9, no. 4, pp. 423–449, 2008.
[72]  K. A. Selkoe, C. M. Henzler, and S. D. Gaines, “Seascape genetics and the spatial ecology of marine populations,” Fish and Fisheries, vol. 9, no. 4, pp. 363–377, 2008.
[73]  D. Hedgecock, P. H. Barber, and S. Edmands, “Genetic approaches to measuring connectivity,” Oceanography, vol. 20, pp. 70–79, 2007.
[74]  M. E. Hellberg, “Gene flow and isolation among populations of marine animals,” Annual Review of Ecology, Evolution, and Systematics, vol. 40, pp. 291–310, 2009.
[75]  W. H. Lowe and F. W. Allendorf, “What can genetics tell us about population connectivity?” Molecular Ecology, vol. 19, no. 15, pp. 3038–3051, 2010.
[76]  S. Lavery, C. Moritz, and D. R. Fielder, “Indo-Pacific population structure and evolutionary history of the coconut crab Birgus latro,” Molecular Ecology, vol. 5, no. 4, pp. 557–570, 1996.
[77]  S. T. Williams and J. A. H. Benzie, “Indo-West pacific patterns of genetic differentiation in the high-dispersal starfish Linckia laevigata,” Molecular Ecology, vol. 6, no. 6, pp. 559–573, 1997.
[78]  S. T. Williams and J. A. H. Benzie, “Evidence of a biogeographic break between populations of a high dispersal starfish: congruent regions within the Indo-West Pacific defined by color morphs, mtDNA, and allozyme data,” Evolution, vol. 52, no. 1, pp. 87–99, 1998.
[79]  T. F. Duda Jr. and S. R. Palumbi, “Population structure of the black tiger prawn, Penaeus monodon, among western Indian Ocean and western Pacific populations,” Marine Biology, vol. 134, no. 4, pp. 705–710, 1999.
[80]  J. A. H. Benzie, “Major genetic differences between crown-of-thorns starfish (Acanthaster planci) populations in the Indian and Pacific oceans,” Evolution, vol. 53, no. 6, pp. 1782–1795, 1999.
[81]  G. W?rheide, L. S. Epp, and L. Macis, “Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): founder effects, vicariance, or both?” BMC Evolutionary Biology, vol. 8, no. 1, article 24, 2008.
[82]  M. A. Ablan, J. W. McManus, C. A. Chen, et al., “Population inter-dependencies in the South China Sea Ecosystem,” Tech. Rep., ICLARM -The World Fish Center, Penang, Malaysia, 1999, (submitted to the John D. Catherine T. MacArthur Foundation).
[83]  C. A. Chen, M. C. A. Ablan, J. W. McManus et al., “Population structure and genetic variability of six bar wrasse (Thallasoma hardwicki) in northern South China Sea revealed by mitochondrial control region sequences,” Marine Biotechnology, vol. 6, no. 4, pp. 312–326, 2004.
[84]  M. Leray, R. Beldade, S. J. Holbrook, R. J. Schmitt, S. Planes, and G. Bernardi, “Allopatric divergence and speciation in coral reef fish: the three-spot dascyllus, Dascyllus trimaculatus, species complex,” Evolution, vol. 64, no. 5, pp. 1218–1230, 2010.
[85]  S. A. Lourie, D. M. Green, and A. C. J. Vincent, “Dispersal, habitat differences, and comparative phylogeography of Southeast Asian seahorses (Syngnathidae: Hippocampus),” Molecular Ecology, vol. 14, no. 4, pp. 1073–1094, 2005.
[86]  R. M. Magsino and M. A. Juinio-Me?ez, “The influence of contrasting life history traits and oceanic processes on genetic structuring of rabbitfish populations Siganus argenteus and Siganus fuscescens along the eastern Philippine coasts,” Marine Biology, vol. 154, no. 3, pp. 519–532, 2008.
[87]  J. Drew and P. H. Barber, “Sequential cladogenesis of the reef fish Pomacentrus moluccensis (Pomacentridae) supports the peripheral origin of marine biodiversity in the Indo-Australian archipelago,” Molecular Phylogenetics and Evolution, vol. 53, no. 1, pp. 335–339, 2009.
[88]  M. Kochzius, C. Seidel, J. Hauschild et al., “Genetic population structures of the blue starfish Linckia laevigata and its gastropod ectoparasite Thyca crystallina,” Marine Ecology Progress Series, vol. 396, pp. 211–219, 2009.
[89]  S. T. Williams, “Species boundaries in the starfish genus Linckia,” Marine Biology, vol. 136, no. 1, pp. 137–148, 2000.
[90]  R. M. Magsino, R. G. Ravago, and M. A. Juinio-Me?ez, “Genetic relationship of Linckia laevigata color morphs in the Kalayaan Islands Group, western Philippines: preliminary evidence,” in Proceedings of the 9th International Coral Reef Symposium, vol. 1, pp. 113–120, Bali, Indonesia, 2002.
[91]  P. H. Barber, S. R. Palumbi, M. V. Erdmann, and M. K. Moosa, “Biogeography: a marine Wallace's line?” Nature, vol. 406, no. 6797, pp. 692–693, 2000.
[92]  P. H. Barber, S. R. Palumbi, M. V. Erdmann, and M. K. Moosa, “Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: patterns, causes, and consequences,” Molecular Ecology, vol. 11, no. 4, pp. 659–674, 2002.
[93]  L. A. Kirkendale and C. P. Meyer, “Phylogeography of the Patelloida profunda group (Gastropoda: Lottidae): diversification in a dispersal-driven marine system,” Molecular Ecology, vol. 13, no. 9, pp. 2749–2762, 2004.
[94]  Imron, B. Jeffrey, P. Hale, B. M. Degnan, and S. M. Degnan, “Pleistocene isolation and recent gene flow in Haliotis asinina, an Indo-Pacific vetigastropod with limited dispersal capacity,” Molecular Ecology, vol. 16, no. 2, pp. 289–304, 2007.
[95]  L. M. Tsang, B. K. K. Chan, T. H. Wu et al., “Population differentiation in the barnacle Chthamalus malayensis: postglacial colonization and recent connectivity across the Pacific and Indian Oceans,” Marine Ecology Progress Series, vol. 364, pp. 107–118, 2008.
[96]  L. Knittweis, W. E. Kraemer, J. Timm, and M. Kochzius, “Genetic structure of Heliofungia actiniformis (Scleractinia: Fungiidae) populations in the Indo-Malay Archipelago: implications for live coral trade management efforts,” Conservation Genetics, vol. 10, no. 1, pp. 241–249, 2009.
[97]  C. J. Starger, P. H. Barber, Ambariyanto, and A. C. Baker, “The recovery of coral genetic diversity in the Sunda Strait following the 1883 eruption of Krakatau,” Coral Reefs, vol. 29, no. 3, pp. 547–565, 2010.
[98]  C. Perrin and P. Borsa, “Mitochondrial DNA analysis of the geographic structure of Indian scad mackerel in the Indo-Malay archipelago,” Journal of Fish Biology, vol. 59, no. 5, pp. 1421–1426, 2001.
[99]  M. A. Ablan, “Genetics and the study of fisheries connectivity in Asian developing countries,” Fisheries Research, vol. 78, no. 2-3, pp. 158–168, 2006.
[100]  R. G. Ravago-Gotanco and M. A. Juinio-Me?ez, “Phylogeography of the mottled spinefoot Siganus fuscescens: pleistocene divergence and limited genetic connectivity across the Philippine archipelago,” Molecular Ecology. In press.
[101]  S. Planes and C. Fauvelot, “Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean,” Evolution, vol. 56, no. 2, pp. 378–399, 2002.
[102]  R. G. Ravago-Gotanco and M. A. Juinio-Me?ez, “Population genetic structure of the milkfish, Chanos chanos, based on PCR-RFLP analysis of the mitochondrial control region,” Marine Biology, vol. 145, no. 4, pp. 789–801, 2004.
[103]  L. K. Bay, J. H. Choat, L. van Herwerden, and D. R. Robertson, “High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past?” Marine Biology, vol. 144, no. 4, pp. 757–767, 2004.
[104]  M. R. Gaither, R. J. Toonen, D. R. Robertson, S. Planes, and B. W. Bowen, “Genetic evaluation of marine biogeographical barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus kasmira and Lutjanus fulvus),” Journal of Biogeography, vol. 37, no. 1, pp. 133–147, 2010.
[105]  G. Bernardi and A. Vagelli, “Population structure in Banggai cardinalfish, Pterapogon kauderni, a coral reef species lacking a pelagic larval phase,” Marine Biology, vol. 145, no. 4, pp. 803–810, 2004.
[106]  E. A. Hoffman, N. Kolm, A. Berglund, J. R. Arguello, and A. G. Jones, “Genetic structure in the coral-reef-associated Banggai cardinalfish, Pterapogon kauderni,” Molecular Ecology, vol. 14, no. 5, pp. 1367–1375, 2005.
[107]  A. Vagelli, M. Burford, and G. Bernardi, “Fine scale dispersal in Banggai Cardinalfish, Pterapogon kauderni, a coral reef species lacking a pelagic larval phase,” Marine Genomics, vol. 1, no. 3-4, pp. 129–134, 2008.
[108]  J. S. Nelson, R. J. Hoddell, L. M. Chou, W. K. Chan, and V. P. E. Phang, “Phylogeographic structure of false clownfish, Amphiprion ocellaris, explained by sea level changes on the Sunda shelf,” Marine Biology, vol. 137, no. 4, pp. 727–736, 2000.
[109]  J. R. Ovenden, J. Salini, S. O'Connor, and R. Street, “Pronounced genetic population structure in a potentially vagile fish species (Pristipomoides multidens, Teleostei; Perciformes; Lutjanidae) from the East Indies triangle,” Molecular Ecology, vol. 13, no. 7, pp. 1991–1999, 2004.
[110]  A. Rohfritsch and P. Borsa, “Genetic structure of Indian scad mackerel Decapterus russelli: Pleistocene vicariance and secondary contact in the Central Indo-West Pacific Seas,” Heredity, vol. 95, no. 4, pp. 315–326, 2005.
[111]  Z. H. Sulaiman and J. R. Ovenden, “Population genetic evidence for the east-west division of the narrow-barred Spanish mackerel (Scomberomorus commerson, Perciformes: Teleostei) along Wallace's Line,” Biodiversity and Conservation, vol. 19, pp. 563–574, 2009.
[112]  H. A. Lessios, B. D. Kessing, D. R. Robertson, and G. Paulay, “Phylogeography of the pantropical sea urchin Eucidaris in relation to land barriers and ocean currents,” Evolution, vol. 53, no. 3, pp. 806–817, 1999.
[113]  H. A. Lessios, B. D. Kessing, and J. S. Pearse, “Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema,” Evolution, vol. 55, no. 5, pp. 955–975, 2001.
[114]  H. A. Lessios, J. Kane, and D. R. Robertson, “Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans,” Evolution, vol. 57, no. 9, pp. 2026–2036, 2003.
[115]  S. Arnaud, F. Bonhomme, and P. Borsa, “Mitochondrial DNA analysis of the genetic relationships among populations of scad mackerel (Decapterus macarellus, D. macrosoma, and D. russelli) in South-East Asia,” Marine Biology, vol. 135, no. 4, pp. 699–707, 1999.
[116]  B. W. Bowen, A. L. Bass, L. A. Rocha, W. S. Grant, and D. R. Robertson, “Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale,” Evolution, vol. 55, no. 5, pp. 1029–1039, 2001.
[117]  O. S. Klanten, J. H. Choat, and L. van Herwerden, “Extreme genetic diversity and temporal rather than spatial partitioning in a widely distributed coral reef fish,” Marine Biology, vol. 150, no. 4, pp. 659–670, 2007.
[118]  J. B. Horne, L. van Herwerden, J. H. Choat, and D. R. Robertson, “High population connectivity across the Indo-Pacific: congruent lack of phylogeographic structure in three reef fish congeners,” Molecular Phylogenetics and Evolution, vol. 49, no. 2, pp. 629–638, 2008.
[119]  M. D. Santos, G. V. Lopez, and N. C. Barut, “A pilot study on the genetic variation of eastern little tuna (Euthynnus affinis) in Southeast Asia,” Philippine Journal of Science, vol. 139, no. 1, pp. 43–50, 2010.
[120]  M. T. Craig, J. A. Eble, B. W. Bowen, and D. R. Robertson, “High genetic connectivity across the Indian and Pacific Oceans in the reef fish Myripristis berndti (Holocentridae),” Marine Ecology Progress Series, vol. 334, pp. 245–254, 2007.
[121]  W. S. Grant and B. W. Bowen, “Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation,” Journal of Heredity, vol. 89, no. 5, pp. 415–426, 1998.
[122]  J. -O. Irisson, C. Guigand, and C. B. Paris, “Detection and quantification of marine larvae orientation in the pelagic environment,” Limnology and Oceanography: Methods, vol. 7, pp. 664–672, 2009.
[123]  G. P. Jones, S. Planes, and S. R. Thorrold, “Coral reef fish larvae settle close to home,” Current Biology, vol. 15, no. 14, pp. 1314–1318, 2005.
[124]  G. Gerlach, J. Atema, M. J. Kingsford, K. P. Black, and V. Miller-Sims, “Smelling home can prevent dispersal of reef fish larvae,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 3, pp. 858–863, 2007.
[125]  M. Bailey and T. J. Pitcher, Eds., “Ecological and economic analyses of the bird's head seascape, Papua, Indonesia: II,” Fisheries Centre Research Reports, vol. 16, no. 1, p. 1186, 2008.
[126]  Y. Y. Kim, T. Qu, T. Jensen et al., “Seasonal and interannual variations of the North Equatorial current bifurcation in a high-resolution OGCM,” Journal of Geophysical Research C, vol. 109, no. 3, Article ID C03040, 19 pages, 2004.
[127]  Q. Y. Wang, R. X. Cao, S. W. Zhang, and D. X. Hu, “Bifurcation of pacific north equatorial current at the surface,” Science in China, Series D, vol. 52, no. 2, pp. 227–231, 2009.
[128]  M. D. Spalding, H. E. Fox, G. R. Allen et al., “Marine ecoregions of the world: a bioregionalization of coastal and shelf areas,” BioScience, vol. 57, no. 7, pp. 573–583, 2007.
[129]  P. M. Ali?o and E. D. Gomez, “Philippine coral reef conservation: its significance to the South China Sea,” in Development and Conservation in the Asia-Pacific Region, Proceedings of the Regional Conference of the East-West Center Association, K. Yamamoto, S. Ishijima, S. Sakihara, et al., Eds., pp. 222–229, 1994.
[130]  C. L. Remington, “Suture-zones of hybrid interaction between recently joined biotas,” Evolutionary Biology, vol. 2, pp. 321–428, 1968.
[131]  G. Hewitt, “The genetic legacy of the quaternary ice ages,” Nature, vol. 405, no. 6789, pp. 907–913, 2000.
[132]  J. A. H. Benzie, “Genetic structure of coral reef organisms: ghosts of dispersal past,” American Zoologist, vol. 39, no. 1, pp. 131–145, 1999.
[133]  J.-P. A. Hobbs, A. J. Frisch, G. R. Allen, and L. van Herwerden, “Marine hybrid hotspot at Indo-Pacific biogeographic border,” Biology Letters, vol. 5, no. 2, pp. 258–261, 2009.
[134]  A. D. Marie, L. van Herwerden, J. H. Choat, and J.-P. A. Hobbs, “Hybridization of reef fishes at the Indo-Pacific biogeographic barrier: a case study,” Coral Reefs, vol. 26, no. 4, pp. 841–850, 2007.
[135]  S. T. Williams, J. Jara, E. Gomez, and N. Knowlton, “The Marine Indo-West Pacific break: contrasting the resolving power of mitochondrial and nuclear genes,” Integrative and Comparative Biology, vol. 42, no. 5, pp. 941–952, 2002.
[136]  N. H. Barton and G. M. Hewitt, “Analysis of hybrid zones,” Annual Review of Ecology and Systematics, vol. 16, pp. 113–148, 1985.
[137]  L. Excoffier, M. Foll, and R. J. Petit, “Genetic consequences of range expansions,” Annual Review of Ecology, Evolution, and Systematics, vol. 40, pp. 481–501, 2009.
[138]  D. Tager, J. M. Webster, D. C. Potts, W. Renema, J. C. Braga, and J. M. Pandolfi, “Community dynamics of Pleistocene coral reefs during alternative climatic regimes,” Ecology, vol. 91, no. 1, pp. 191–200, 2010.
[139]  D. Tautz, H. Ellegren, and D. Weigel, “Next generation molecular ecology,” Molecular Ecology, vol. 19, supplement 1, pp. 1–3, 2010.
[140]  C. L. Richards, B. C. Carstens, and L. L. Knowles, “Distribution modelling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographical hypotheses,” Journal of Biogeography, vol. 34, no. 11, pp. 1833–1845, 2007.
[141]  E. A. Treml, P. N. Halpin, D. L. Urban, and L. F. Pratson, “Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation,” Landscape Ecology, vol. 23, no. 1, pp. 19–36, 2008.
[142]  P. Saenz-Agudelo, G. P. Jones, S. R. Thorrold, and S. Planes, “Estimating connectivity in marine populations: an empirical evaluation of assignment tests and parentage analysis under different gene flow scenarios,” Molecular Ecology, vol. 18, no. 8, pp. 1765–1776, 2009.
[143]  S. Planes, G. P. Jones, and S. R. Thorrold, “Larval dispersal connects fish populations in a network of marine protected areas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5693–5697, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413