全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Construction and Analysis of the Immune Effects of a Streptococcus agalactiae Surface Protein ScpB Vaccine Encapsulated with Polylactic-Co-Glycolic Acid (PLGA)

DOI: 10.4236/oalib.1102886, PP. 1-11

Subject Areas: Aquaculture, Fisheries & Fish Science

Keywords: Tilapia, Streptococcus agalactiae, C5a Peptidase, Immunogenicity

Full-Text   Cite this paper   Add to My Lib

Abstract

In order to find an effective immune preparation to control tilapia streptococcus disease, the Streptococcus agalactiae surface protein serine protease C5a peptidase (ScpB) was cloned and the recombinant protein was encapsulated in poly (lactide-co-glycolic acid) (PLGA) microspheres, which were comprised of biodegradable materials. The ScpB-PLGA vaccine was then administered to the tilapia intraperitoneally at different concentrations, with PBS used as a control, and the relative percent survival (RPS) of each group was calculated. Serum lysozyme and superoxide dismutase (SOD) activity levels and antibody levels (OD450nm) were tested weekly for the duration of the experiment. The results showed that the ScpB loading rate in the PLGA microspheres was 2.55% and the encapsulation efficiency reached 48.76%. The RPS ranged from 66.80% to 87.66%, with the highest RPS noted in group P1 (1 μg/g). The serum lysozyme, SOD and antibody (IgM) levels were significantly higher in the vaccinated fish relative to the control groups (P < 0.01). These results showed that PLGA could serve as an effective adjuvant for a ScpB vaccine and could provide relatively sustained immune protection.

Cite this paper

Ke, X. , Li, Q. , Li, X. , Liu, Z. , Lu, M. and Yang, H. (2016). Construction and Analysis of the Immune Effects of a Streptococcus agalactiae Surface Protein ScpB Vaccine Encapsulated with Polylactic-Co-Glycolic Acid (PLGA). Open Access Library Journal, 3, e2886. doi: http://dx.doi.org/10.4236/oalib.1102886.

References

[1]  Chen, M., Li, L.P., Wang, R., Liang, W.W., Huang, Y., Li, J., Lei, A.Y., Huang, W.Y. and Gan, X. (2012) PCR Detection and PFGE Genotype Analyses of Streptococcal Clinical Isolates from Tilapia in China. Veterinary Microbiology, 159, 526-530.
http://dx.doi.org/10.1016/j.vetmic.2012.04.035
[2]  Santillan, D.A., Rai, K.K., Santillan, M.K., Krishnamachari, Y., Salem, A.K. and Hunter, S.K. (2011) Efficacy of Polymeric Encapsulated C5a Peptidase-Based Group B Streptococcus Vaccines in a Murine Model. American Journal of Obstetrics and Gynecology, 205, 249.e1-249.e8.
http://dx.doi.org/10.1016/j.ajog.2011.06.024
[3]  Ye, X., Li, J., Lu, M., Deng, G., Jiang, X., Tian, Y., Quan, Y. and Jian, Q. (2011) Identification and Molecular Typing of Streptococcus agalactiae Isolated from Pond-Cultured Tilapia in China. Fisheries Science, 77, 623-632.
http://dx.doi.org/10.1007/s12562-011-0365-4
[4]  Evans, J.J., Klesius, P.H. and Shoemaker, C.A. (2004) Efficacy of Streptococcus agalactiae (Group B) Vaccine in Tilapia (Oreochromis niloticus) by Intraperitoneal and Bath Immersion Administration. Vaccine, 22, 3769-3773.
http://dx.doi.org/10.1016/j.vaccine.2004.03.012
[5]  Pasnik, D.J., Evans, J.J., Panangala, V.S., Klesius, P.H., Shelby, R.A. and Shoemaker, C.A. (2005) Antigenicity of Streptococcus agalactiae Extracellular Products and Vaccine Efficacy. Journal of Fish diseases, 28, 205-212.
http://dx.doi.org/10.1111/j.1365-2761.2005.00619.x
[6]  Johri, A.K., Paoletti, L.C., Glaser, P., Dua, M., Sharma, P.K., Grandi, G. and Rappuoli, R. (2006) Group B Streptococcus: Global Incidence and Vaccine Development. Nature Reviews Microbiology, 4, 932-942.
http://dx.doi.org/10.1038/nrmicro1552
[7]  Lindahl, G., Stalhammar-Carlemalm, M. and Areschoug, T. (2005) Surface Proteins of Streptococcus agalactiae and Related Proteins in Other Bacterial Pathogens. Clinical Microbiology Reviews, 18, 102-127.
http://dx.doi.org/10.1128/CMR.18.1.102-127.2005
[8]  Areschoug, T., Stalhammar-Carlemalm, M., Larsson, C. and Lindahl, G. (1999) Group B Streptococcal Surface Proteins as Targets for Protective Antibodies: Identification of Two Novel Proteins in Strains of Serotype V. Infection and Immunity, 67, 6350-6357.
[9]  Berner, R., Bender, A., Rensing, C., Forster, J. and Brandis, M. (1999) Low Prevalence of the Immunoglobulin-A- Binding Beta Antigen of the C Protein among Streptococcus agalactiae Isolates Causing Neonatal Sepsis. European Journal of Clinical Microbiology & Infectious Diseases, 18, 545-550.
http://dx.doi.org/10.1007/s100960050346
[10]  Cheng, Q., Debol, S., Lam, H., Eby, R., Edwards, L., Matsuka, Y., Olmsted, S.B. and Cleary, P.P. (2002) Immunization with C5a Peptidase or Peptidasetype III Polysaccharide Conjugate Vaccines Enhances Clearance of Group B Streptococci from Lungs of Infected Mice. Infection and Immunity, 70, 6409-6415.
http://dx.doi.org/10.1128/IAI.70.11.6409-6415.2002
[11]  Martin, D., Rioux, S., Gagnon, E., Boyer, M., Hamel, J., Charland, N. and Brodeur, B.R. (2002) Protection from Group B Streptococcal Infection in Neonatal Mice by Maternal Immunization with Recombinant Sip Protein. Infection and Immunity, 70, 4897-4901.
http://dx.doi.org/10.1128/IAI.70.9.4897-4901.2002
[12]  Cheng, Q., Carlson, B., Pillai, S., Eby, R., Edwards, L., Olmsted, S.B. and Cleary, P. (2001) Antibody against Surface-Bound C5a Peptidase Is Opsonic and Initiates Macrophage Killing of Group B Streptococci. Infection and Immunity, 69, 2302-2308.
http://dx.doi.org/10.1128/IAI.69.4.2302-2308.2001
[13]  Heather, C.M., Kelly, S.D. and Victor, N. (2009) Recent Advances in Understanding the Molecular Basis of Group B Streptococcus Virulence. Expert Reviews in Molecular Medicine, 3, 1-18.
[14]  Dmitriev, A., Tkáciková, L., Suvorov, A., Kantíková, M., Mikula, I. and Totolyan, A. (1999) Comparative Genetic Study of Group B Streptococcal Strains of Human and Bovine Origin. Folia Microbiologica, 44, 449-453.
http://dx.doi.org/10.1007/BF02903721
[15]  Franken, C., Haase, G., Brandt, C., Weber-Heynemann, J., Martin, S., Lammler, C., Podbielski, A., Lutticken, R. and Spellerberg, B. (2001) Horizontal Gene Transfer and Host Specificity of Beta-Haemolytic Streptococci: The Role of a Putative Composite Transposon Containing scpB and lmb. Molecular Microbiology, 41, 925-935.
http://dx.doi.org/10.1046/j.1365-2958.2001.02563.x
[16]  Li, Q.Y., Ke, X.L., Lu, M.X., Zhu, H.P., Gao, F.Y. and Liu, Z.G. (2014) Prokaryotic Expression and Immunogenicity Analysis of C5a Peptidase (ScpB) of Streptococcus agalactiae Isolated from Tilapia. Journal of Fishery Sciences of China, 21, 169-179.
[17]  Ogawa, Y., Yamamoto, M., Okada, H., Yashiki, T. and Shimamoto, T. (1988) A New Technique to Efficiently Entrap Leuprolide Acetate into Microcapsules of Polylactic Acid or Copoly (Lactic Glycolic) Acid. Chemical & Pharmaceutical Bulletin, 36, 1095-1103.
http://dx.doi.org/10.1248/cpb.36.1095
[18]  Panyam, J., Dali, M.M., Sahoo, S.K., Ma, W., Chakravarthi, S.S., Amidon, G.L., Levy, R.J. and Labhasetwar, V. (2003) Polymer Degradation and in Vitro Release of a Model Protein from Poly(D, L-Lactide-co-Glycolide) Nano- and Microparticles. Journal of Controlled Release, 92, 173-187.
http://dx.doi.org/10.1016/S0168-3659(03)00328-6
[19]  Amend, D.F. (1981) Potency Testing of Fish Vaccines. International Symposium on Fish Biologics: Serodiagnostics and Vaccines. Developments in Biological Standardization, 49, 447-454.
[20]  Bohnsack, J.F., Mollison, K.W., Buko, A.M., Ashworth, J.C. and Hill, H.R. (1991) Group B Streptococci Inactivate Complement Component C5a by Enzymic Cleavage at the C-Terminus. Biochemical Journal, 273, 635-640.
http://dx.doi.org/10.1042/bj2730635
[21]  Cheng, Q., Stafslien, D., Purushothaman, S.S. and Cleary, P. (2002) The Group B Streptococcal C5a Peptidase Is Both a Specific Protease and an Invasin. Infection and Immunity, 70, 2408-2413.
http://dx.doi.org/10.1128/IAI.70.5.2408-2413.2002
[22]  Bohnsack, J.F., Takahashi, S., Hammitt, L., Miller, D.V., Aly, A.A. and Adderson, E.E. (2000) Genetic Polymorphisms of Group B Streptococcus scpB Alter Functional Activity of a Cell-Associated Peptidase That Inactivates C5a. Infection and Immunity, 68, 5018-5025.
http://dx.doi.org/10.1128/IAI.68.9.5018-5025.2000
[23]  Tamura, G.S., Hull, J.R., Oberg, M.D. and Castner, D.G. (2006) High Affinity Interaction between Fibronectin and the Group B Streptococcal C5a Peptidase Is Unaffected by a Naturally Occurring Four-Amino-Acid Deletion That Eliminates Peptidase Activity. Infection and Immunity, 74, 5739-5746.
http://dx.doi.org/10.1128/IAI.00241-06
[24]  Santillan, D.A., Andracki, M.E. and Hunter, S.K. (2008) Protective Immunization in Mice against Group B Streptococci Using Encapsulated C5a Peptidase. American Journal of Obstetrics and Gynecology, 198, 114.e1-114.e6.
http://dx.doi.org/10.1016/j.ajog.2007.06.003
[25]  Cleary, P.P., Matsuka, Y.V., Huynh, T., Lam, H. and Olmsted, S.B. (2004) Immunization with C5a Peptidase from Either Group A or B Streptococci Enhances Clearance of Group A Streptococci from Intranasally Infected Mice. Vaccine, 22, 4332-4341.
http://dx.doi.org/10.1016/j.vaccine.2004.04.030
[26]  Li, J., Ye, X., Ke, X.L., Lu, M.X., Chi, Y.Y. and Tian, Y.Y. (2012) Cloning, Expression and Immunogenicity Analysis of Surface Immunogenic Protein (Sip) of Tilapia Streptococcus agalactiae. Acta hydrobiologica Sinica, 36, 626-633.
[27]  Jia, P., Hu, Y., Heng, C., Sun, B., Yu, W. and Sun, L. (2013) Comparative Study of Four Flagellins of Vibrio anguillarum: Vaccine Potential and Adjuvanticity. Fish & Shellfish Immunology, 34, 514-520.
http://dx.doi.org/10.1016/j.fsi.2012.11.039
[28]  Agarwal, A. and Mallapragada, S.K. (2008) Synthetic Sustained Gene Delivery Systems. Current Topics in Medicinal Chemistry, 8, 311-330.
http://dx.doi.org/10.2174/156802608783790965
[29]  Stevenson, C.L., Santini, J.T. and Langer, R. (2012) Reservoir-Based Drug Delivery Systems Utilizing Microtechnology. Advanced Drug Delivery Reviews, 64, 1590-1602.
http://dx.doi.org/10.1016/j.addr.2012.02.005
[30]  Magnadóttir, B. (2006) Innate Immunity of Fish (Overview). Fish & Shellfish Immunology, 20, 137-151.
http://dx.doi.org/10.1016/j.fsi.2004.09.006
[31]  Yano, T. (1996) The Nonspecific Immune System: Humoral Defense. In: Iwama, G. and Nakanishi, T., Eds., The Fish Immune System, Academic Press, San Diego, 106-157.
[32]  Paulsen, S.M., Engstad, R.E. and Robertsen, B. (2001) Enhanced Lysozyme Production in Atlantic Salmon (Salmosalar L.) Macrophages Treated with Yeast Beta-Glucan and Bacterial Lipopolysaccharide. Fish & Shellfish Immunology, 11, 23-37.
http://dx.doi.org/10.1006/fsim.2000.0291
[33]  Chipman, D.M. and Sharon, N. (1969) Mechanism of Lysozyme Action. Science, 165, 454-465.
http://dx.doi.org/10.1126/science.165.3892.454
[34]  Saurabh, S. and Sahoo, P.K. (2008) Lysozyme: An Important Defence Molecule of Fish Innate Immune System. Aquaculture Research, 39, 223-239.
http://dx.doi.org/10.1111/j.1365-2109.2007.01883.x
[35]  Harikrishnan, R., Balasundaram, C. and Heo, M.S. (2012) Poly D, L-Lactide-co-Glycolic Acid (PLGA)-Encapsulated Vaccine on Immune System in Epinephelus bruneus against Uronema marinum. Experimental Parasitology, 131, 325- 332.
http://dx.doi.org/10.1016/j.exppara.2012.04.017
[36]  Tohru, F. and Masuko, U. (2011) Superoxide Dismutases: Role in Redox Signaling, Vascular Function, and Diseases. Antioxidants & Redox Signaling, 15, 1583-1606.
http://dx.doi.org/10.1089/ars.2011.3999
[37]  Garry, R.B. (2011) Superoxide Dismutase in Redox Biology: The Roles of Superoxide and Hydrogen Peroxide. Anti-Cancer Agents in Medicinal Chemistry, 11, 341-346.
http://dx.doi.org/10.2174/187152011795677544
[38]  Gaelle, R., Cédric, L.B., Fabienne, G., Christophe, L. and Christine, P. (2015) Immune Responses of Phenoloxidase and Superoxide Dismutase in the Manila Clam Venerupis philippinarum Challenged with Vibrio tapetis—Part II: Combined Effect of Temperature and Two V. Tapetis Strains. Fish & Shellfish Immunology, 44, 79-87.
http://dx.doi.org/10.1016/j.fsi.2014.12.039
[39]  Cédric, L.B., Gaelle, R., Christine, P., Christophe, L., Catherine, S., Olivier, G., Fabrice, P. and Fabienne, G. (2015) Immune Responses of Phenoloxidase and Superoxide Dismutase in the Manila Clam Venerupis philippinarum Challenged with Vibrio tapetis—Part I: Spatio-Temporal Evolution of Enzymes’ Activities Post-Infection. Fish & Shellfish Immunology, 42, 16-24.
http://dx.doi.org/10.1016/j.fsi.2014.10.021
[40]  Harikrishnan, R., Balasundaram, C. and Heo, M.S. (2012) Poly D, L-Lactide-co-Glycolic Acid-Liposome Encapsulated ODN on Innate Immunity in Epinephelus bruneus against Vibrio alginolyticus. Veterinary Immunology and Immunopathology, 147, 77-85.
http://dx.doi.org/10.1016/j.vetimm.2012.04.008

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413