全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Intelligence vs. Artificial Intelligence: The King Is Naked

DOI: 10.4236/oalib.1103115, PP. 1-37

Subject Areas: Anthropology

Keywords: Artificial Intelligence, Man-Machine Integration Process, Artificial Simulation of the Savant Syndrome, Endo-Dynamo-Tensive Model, Biological Water, Autopoietic Psycho-Neuro Dynamics, Intelligence

Full-Text   Cite this paper   Add to My Lib

Abstract

The sociological dimension of Artificial Intelligence (AI), and automation, is placed in the path traced by the man-machine integration process, started in the eighteenth century by the Industrial Revolution that assumes its current connotation after World War II. The use of the term intelligence, which appears in the expression Artificial Intelligence, is shown to be improper and misleading, and the expression itself should be replaced, eventually, by Artificial Simulation of the Savant Syndrome. By adopting a theoretical perspective, namely Endo-Dynamo-Tensive Model [Messori 2012B], it is traced the mapping of human’s neurological (neuro-dynamics) and psychological (psycho-dynamics) dimension, and is provided the coordinates to be followed in the phenomenological qualification and definition of the psychic-mental-cognitive function intelligence. The neuro-dynamics of the Nervous System (NS), is taken into account by adopting the theoretical, interpretative and investigative perspective indicated by the particular line of research developed in the context of Quantum Field Theory (QFT) and QED (Quantum Electrodynamic Field Theory), that describes the water of which all living systems are composed, i.e. biological water, as water in a coherent oscillatory phase or state other than that of common water, named super-coherent oscillatory state. By introducing the possible functional role exerted within brain activity by glial cells, cerebrospinal fluid, intra- and extra-cellular fluid is outlined the overcoming of the classical neuroscience paradigm, based on the vision of brain activity as ruled by networks of neurons interconnected by synapses. The body-mind hard problem is taken into account and a solution is advanced. The psycho-dynamics of the humans mind territory is taken into account according to the four poles of mental functions introduced by C.G. Jung in his Psychological Types (1921), where he introduces a hierarchy of mental functions in two mental bipolar dimensions (dichotomies). These are sensing (attentiveness by means of the sense organs) coupled to intuition (awareness in unconscious way or being aware of unconscious contents) and thinking (function of intellectual cognition; the forming of logical conclusions) coupled to feeling (function of subjective estimation). At the conclusion of this work, it is provided the phenomenological definition of intelligence that does not contemplate the possibility to apply to neuroscience, and to natural and human sciences in general, the paradigm that inspires the research on AI, i.e. computational model and Information Theory.

Cite this paper

Messori, C. (2016). Intelligence vs. Artificial Intelligence: The King Is Naked. Open Access Library Journal, 3, e3115. doi: http://dx.doi.org/10.4236/oalib.1103115.

References

[1]  Messori, C. (2016) From Continuity to Contiguity. On the Genesis of Consciousness, Culture and Oral Language—Part I of IV. Journal of Consciousness Exploration & Research, 7, 163-228.
https://www.researchgate.net/publication/295857703_From
_Continuity_to_Contiguity_On_the_genesis_of_consciousness
_culture_and_oral_language_Part_I_of_IV

[2]  Messori, C. (2000) Il Sole e la Luna. Sulla Natura dei Simboli e della Mente Umana. Federico Ceratti Editore, Milan.
[3]  Messori, C. (2012) Dalla Facoltà Acustico-Musicale alle Origini del Linguaggio Orale Fino al Predominio della Cavità Orale che Genera il Mondo sulla Cavità Uterina che Genera la Vita. Il Minotauro, Persiani Editore, Bologna, 2, 6-43.
[4]  Mencattini, A., et al. (2014) Speech Emotion Recognition Using Amplitude Modulation Parameters and a Combined Feature Selection Procedure. Knowledge Based Systems, 63, 68-81.
http://dx.doi.org/10.1016/j.knosys.2014.03.019
https://www.researchgate.net/publication/261328157_Speech_emotion
_recognition_using_amplitude_modulation_parameters_and_a_combined
_feature_selection_procedure

[5]  Fleischer, J.G. and Edelman, G.M. (2009) Brain-Based Devices: An Embodied Approach to Linking Nervous System Structure and Function to Behaviour. IEEE Robotics & Automation Magazine, 16, 33-41.
http://dx.doi.org/10.1109/MRA.2009.933621
http://www.nsi.edu/~fleischer/fleischer_edelman_ram.pdf
[6]  Agbinya, J.I. (2011) Principles of Inductive Near Field Communications for Internet of Things. River Publishers.
[7]  Regalado, A. (2014) Military Funds Brain-Computer Interfaces to Control Feelings. MIT Technology Review, May 29.
https://www.technologyreview.com/s/527561/military-funds-brain-
computer-interfaces-to-control-feelings/

[8]  Strickland, E. (2014) DARPA Project Starts Building Human Memory Prosthetics. IEEE Spectrum, August 27.
http://spectrum.ieee.org/biomedical/bionics/darpa-project-starts-
building-human-memory-prosthetics

[9]  DARPA (2015) Neurotechnology Provides Near-Natural Sense of Touch. DARPA News and Events.
www.darpa.mil/news-events/2015-09-11
[10]  Sanchez, J. (2015) Restoring Active Memory (RAM). DARPA Program Information.
www.darpa.mil//program/restoring-active-memory
[11]  Sanchez, J. (2015) Systems-Based Neurotechnoloy for Emerging Therapie (SUBNETS). DARPA Program Information.
[12]  Messori, C. (2011) Cells, Neurons, and Qualia: The Holographic Strange Attractor Model. Journal of Consciousness Exploration & Research, 2, 1417-1437.
https://www.researchgate.net/publication/255696668_Cells_
Neurons_and_Qualia_The_Holographic_Strange_Attractor_Model

[13]  Messori, C. (2012) A Cosmogonic Model of Human Consciousness. Journal of Con- sciousness Exploration & Research, 3, 1149-1208.
https://www.researchgate.net/publication/255696726_A_
Cosmogonic_Model_of_Human_Consciousness

[14]  Messori, C. (2013) L’Antropologia della Coscienza incontra la Fisica Quantistico- Relativistica: Modello Cosmogonico Endodynamotensivo (EDT) e Mnemopoiesi (MOPS). Volume 1, Il Minotauro, Persiani Editore, Bologna, 1, 7-82.
[15]  Messori, C. (2015) Quale Modello per le Neuroscienze—Part. I of III. Volume 1, Il Minotauro, Persiani Editore, Bologna, 1, 25-45.
[16]  Messori, C. (2015) Quale Modello per le Neuroscienze—Part II of III. Volume 2, Il Minotauro, Persiani Editore, Bologna, 2, 80-117.
[17]  Messori, C. (2016) Quale Modello per le Neuroscienze—Part III. Volume 2, Il Minotauro, Persiani Editore, Bologna.
[18]  La Marr, W.A. (1998) The Effect of Supercoiling on Small Molecule-DNA Interactions. Massachusetts Institute of Technology, 1-103.
https://dspace.mit.edu/bitstream/handle/1721.1/50414/41163964-MIT.pdf?sequence=2
[19]  Vologodskii, A.V., et al. (1979) Fluctuations in Superhelical DNA. Nucleic Acids Research, 6, 967-982.
http://dx.doi.org/10.1093/nar/6.3.967
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC327745/pdf/
nar00444-0159.pdf

[20]  Zhou, E.H., et al. (2009) Universal Behavior of the Osmotically Compressed Cell and Its Analogy to the Colloidal Glass Transition. Proceedings of the National Academy of Sciences of the United States of America, 106, 10632-10637.
http://dx.doi.org/10.1073/pnas.0901462106
[21]  De Ninno, A., Del Giudice, E., Gamberale, L. and Congiu Castellano, A. (2014) The Structure of Liquid Water Emerging from the Vibrational Spectroscopy: Interpretation with QED Theory. Water Journal, 6, 13-25.
http://www.waterjournal.org/uploads/vol6/deninno/WATER.2013.13.DeNinno.pdf
[22]  Ho, M.W. (2014) Large Supramolecular Water Caught on Camera: A Review. Water Journal, 6, 1-12.
http://www.waterjournal.org/uploads/vol6/ho/WATER.2013.12.Ho.pdf
[23]  Clegg, J.S. (1982) Alternative Views on the Role of Water in Cell Function. In: Franks, F. and Mathias, S.F., Eds., Biophysics of Water, John Wiley and Sons, New York, 365-383.
[24]  Antonenko, Y.N., Pohl, P. and Rosenfeld, E. (1996) Visualisation of the Reaction Layer in the Immediate Membrane Vicinity. Archives of Biochemistry and Biophysics, 333, 225-232.
https://www.jku.at/biophysics/content/e54633/e54639/e54665/
[25]  Mollenhauer, H.H. and Morré, D.J. (1978) Structural Compartmentation of the Cytosol: Zones of Exclusion, Zones of Adhesion, Cytoskeletal and Intercisternal Elements. In: Roodyn, D.B., Ed., Subcellular Biochemistry, Vol. 5, Plenum Press, New York, 327-362.
[26]  Barry, P.H. and Diamond, J.M. (1984) Effects of Unstirred Layers on Membrane Phenomena. Physiological Reviews, 64, 763-872.
[27]  Pollack, G.H. and Clegg, J. (2008) Unexpected Linkage between Unstirred Layers, Exclusion Zones, and Water. In: Pollack, G.H. and Chin, W.C., Eds., Phase Transitions in Cell Biology, Springer Science & Business Media, Berlin, Germany, 143-152.
[28]  Tedeschi, A. (2010) Is the Living Dynamics Able to Change the Properties of Water? International Journal of Design & Nature Ecodynamics, 5, 60-67.
www.witpress.com/Secure/ejournals//papers/D&NE050108f.pdf
[29]  Keutsch, F.N. and Saykally, R.J. (2001) Water Clusters: Untangling the Mysteries of the Liquid, One Molecule at a Time. Proceedings of the National Academy of Sciences of the United States of America, 98, 10533-10540.
http://www.pnas.org/content/98/19/10533.full.pdf
[30]  Murugan, N.J., Karbowski, L.M. and Persinger, M.A. (2014) Serial pH Increments (~20 to 40 Milliseconds) in Water during Exposures to Weak, Physiologically Patterned Magnetic Fields: Implications for Consciousness. Water Journal, 6, 45-60.
http://www.waterjournal.org/volume-6/persinger-summary-2
[31]  Meyl, K. (2012) DNA and Cell Resonance: Magnetic Waves Enable Cell Communication. DNA and Cell Biology, 31, 422-426.
http://dx.doi.org/10.1089/dna.2011.1415
http://www.k-meyl.de/go/Primaerliteratur/Magnetic_Waves-
Enable-Cell_Communication.pdf

[32]  Meyl, K. (2012) About Vortex Physics and Vortex Losses. Journal of Vortex Science and Technology, 1, Article ID: 235563.
http://omicsonline.com/open-access/about-vortex-physics-and-
vortex-losses-2090-8369.1000101.pdf?aid=15110

[33]  Del Giudice, E. and Tedeschi, A. (2009) Water and the Autocatalysis in Living Matter. Electromagnetic Biology and Medicine, 28, 46-54.
http://dx.doi.org/10.1080/15368370802708728
http://www.ncbi.nlm.nih.gov/pubmed/19337894
[34]  Voeikov, V.L. and Del Giudice, E. (2009) Water Respiration—The Basis of the Living State. Water Journal, 1, 52-75.
www.waterjournal.org/uploads/vol1/voeikov/WATER-Vol1-Voeikov.pdf
[35]  Brizhik, L.S., Del Giudice, E., Tedeschi, A. and Voeikov, V.L. (2011) The Role of Water in the Information Exchange between the Components of an Ecosystem. Ecological Modelling, 222, 2869-2877.
http://dx.doi.org/10.1016/j.ecolmodel.2011.05.017
https://www.researchgate.net/publication/229327908_The_
role_of_water_in_the_information_exchange_between_the_
components_of_an_ecosystem

[36]  Pagnotta, S. and Bruni, F. (2007) The Glassy State of Water: A “Stop and Go” Device for Biological Processes. In: Pollack, G.H., et al., Eds., Water and the Cell, Springer Verlag, Heidelberg, German, 93-112.
[37]  Agnati, L.F., et al. (1995) Intercellular Communication in the Brain: Wiring Versus Volume Transmission. Neuroscience, 69, 711-726.
http://dx.doi.org/10.1016/0306-4522(95)00308-6
[38]  Agnati, L.F. and Fuxe, K. (2014) Extracellular-Vesicle Type of Volume Transmission and Tunnelling-Nanotube Type of Wiring Transmission Add a New Dimension to Brain Neuro-Glial Networks. Philosophical Transactions of the Royal Society B, 369, Article ID: 20130505.
[39]  Agnati, L.F., et al. (2010) Understanding Wiring and Volume Transmission. Brain Research Reviews, 64, 137-159.
http://dx.doi.org/10.1016/j.brainresrev.2010.03.003
[40]  Agnati, L.F., et al. (2014) Information Handling by the Brain: Proposal of a New “Paradigm” Involving the Roamer Type of Volume Transmission and the Tunneling Nanotube Type of Wiring Transmission. Journal of Neural Transmission (Vienna), 121, 1431-1449.
http://dx.doi.org/10.1007/s00702-014-1240-0
[41]  Del Giudice, E. and Vitiello, G. (2006) The Role of the Electromagnetic Field in the Formation of Domains in the Process of Symmetry Breaking Phase Transition. Physical Review A, 74, Article ID: 22105.
https://arxiv.org/pdf/cond-mat/0607594.pdf
http://dx.doi.org/10.1103/PhysRevA.74.022105
[42]  Del Giudice, E., Spinetti, P.R. and Tedeschi, A. (2010) Water Dynamics at the Root of Metamorphosis in Living Organisms. Water Journal, 2, 566-586.
http://www.mdpi.com/2073-4441/2/3/566
http://dx.doi.org/10.3390/w2030566
[43]  Montagnier, L., et al. (2015) Transduction of DNA Information through Water and Electromagnetic Waves. Electromagnetic Biology and Medicine, 34, 106-112.
https://arxiv.org/pdf/1501.01620v1.pdf
http://dx.doi.org/10.3109/15368378.2015.1036072
[44]  Jessen, K.R. (2004) Cells in Focus, Glial Cells. The International Journal of Biochemistry & Cell Biology, 36, 1861-1867.
http://www.ucl.ac.uk/cdb/research/jessenmirsky/publications/IntJBiochem.pdf
[45]  Roth, G. and Dicke, U. (2013) Evolution of Nervous Systems and Brains. In: Galizia, C.G. and Lledo, P.M. (eds.) Neurosciences—From Molecule to Behavior: A University Textbook. Chapter 2, Springer-Verlag Berlin Heidelberg, 19-45.
http://dx.doi.org/10.1007/978-3-642-10769-6_2
[46]  Bucher, D. and Anderson, P.A.V. (2015) Evolution of the First Nervous Systems—What Can We Surmise? Journal of Experimental Biology, 218, 501-503.
http://jeb.biologists.org/content/218/4/501
http://dx.doi.org/10.1242/jeb.111799
[47]  Efimov, A., et al. (2007) Asymmetric CLASP-Dependent Nucleation of Noncentrosomal Microtubules at the Trans-Golgi Network. Developmental Cell, 12, 917-930.
http://www.cell.com/developmental-cell/abstract/S1534-5807(07)00149-9
http://dx.doi.org/10.1016/j.devcel.2007.04.002
[48]  Oberheim, N.A., Goldman, S.A. and Nedergaard, M. (2012) Heterogeneity of Astrocytic Form and Function. Methods in Molecular Biology, 814, 23-45.
http://dx.doi.org/10.1007/978-1-61779-452-0_3
[49]  Oberheim, N.A., et al. (2009) Uniquely Hominid Features of Adult Human Astrocytes. The Journal of Neuroscience, 29, 3276-3287.
http://dx.doi.org/10.1523/JNEUROSCI.4707-08.2009
www.cns.nyu.edu/events/spf/SPF_papers/Oberheim_et_al_2009.pdf
[50]  Robertson, J.M. (2013) Astrocytes and the Evolution of the Human Brain. Medical Hypotheses, 82, 236-239.
https://www.researchgate.net/publication/259586299_Astrocytes_and_
the_evolution_of_the_human_brain

[51]  Bondan, E.F., et al. (2015) Glial Cells of the Central Nervous System of Bothrops jararaca (Reptilia, Ofidae): An Ultrastructural Study. Pesquisa Veterinária Brasileira, 35, 685-690.
http://www.scielo.br/pdf/pvb/v35n7/1678-5150-pvb-35-07-00685.pdf
http://dx.doi.org/10.1590/S0100-736X2015000700014
[52]  Allen, N.J. and Barres, B.A. (2009) Glia—More than Just Brain Glue. Nature, 457, 675-677.
http://dx.doi.org/10.1038/457675a
[53]  Hartline, D.K. (2011) The Evolutionary Origins of Glia. Glia, 59, 1215-1236.
http://dx.doi.org/10.1002/glia.21149
[54]  Barkovich, A.J., Gressens, P. and Evrard, P. (1992) Formation, Maturation, and Disorders of Brain Neocortex. American Journal of Neuroradiology, 13, 423-446.
http://www.ajnr.org/content/13/2/423.full.pdf
[55]  Lazzari, M. and Franceschini, V. (2004) Glial Fibrillary Acidic Protein and Vimentin Immunoreactivity of Astroglial Cells in the Central Nervous System of the African Lungfish, Protopterus annectens (Dipnoi: Lepidosirenidae). Journal of Morphology, 262, 741-749.
https://www.researchgate.net/publication/8229778_Glial_fibrillary_
acidic_protein_and_vimentin_immunoreactivity_of_astroglial_cells_
in_the_central_nervous_system_of_the_African_lungfishProtopterus_
annectens_Dipnoi_Lepidosirenidae

http://dx.doi.org/10.1002/jmor.10274
[56]  Weissman, T., et al. (2003) Neurogenic Radial Glial Cells in Reptile, Rodent and Human: from Mitosis to Migration. Cerebral Cortex, 13, 550-559.
http://cercor.oxfordjournals.org/content/13/6/550.full
http://dx.doi.org/10.1093/cercor/13.6.550
[57]  Bjornsson, C.S., et al. (2015) It Takes a Village: Constructing the Neurogenic Niche. Development Cell, 32, 435-446.
http://dx.doi.org/10.1016/j.devcel.2015.01.010
http://www.cell.com/developmental-cell/pdf/S1534-5807(15)00033-7.pdf
[58]  Ma, D.K., et al. (2008) Neurogenic Niches in the Adult Mammalian Brain. In: Gage, F.H., Kempermann, G. and Song, H., Eds., Adult Neurogenesis, Chapter 11, Cold Spring Harbor, New York, 207-225.
[59]  Ming, G. and Song, H. (2011) Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions. Neuron, 70, 687-702.
www.cell.com/neuron/pdf/S0896-6273(11)00348-5.pdf
http://dx.doi.org/10.1016/j.neuron.2011.05.001
[60]  Morshead, C.M., et al. (1994) Neural Stem Cells in the Adult Mammalian Forebrain: A Relatively Quiescent Subpopulation of Subependymal Cells. Neuron, 13, 1071-1082.
http://dx.doi.org/10.1016/0896-6273(94)90046-9
[61]  Reynolds, B.A. and Weiss, S. (1996) Clonal and Population Analyses Demonstrate That an EGF-Responsive Mammalian Embryonic CNS Precursor Is a Stem Cell. Developmental Biology, 175, 1-13.
www.sciencedirect.com/science/article/pii/S0012160696900901
http://dx.doi.org/10.1006/dbio.1996.0090
[62]  Doetsch, F., Garcia-Verdugo, J.M. and Alvarez-Buylla, A. (1999) Regeneration of a Germinal Layer in the Adult Mammalian Brain. Proceedings of the National Academy of Sciences of the United States of America, 97, 11619-11624.
http://dx.doi.org/10.1073/pnas.96.20.11619
[63]  Oberheim N.A., et al. (2006) Astrocytic Complexity Distinguishes the Human Brain. Trends in Neurosciences, 29, 547-553.
http://dx.doi.org/10.1016/j.tins.2006.08.004
[64]  Fiorelli, R., et al. (2015) Adding a Spatial Dimension to Postnatal Ventricular-Subventricu- lar Zone Neurogenesis. Development (Cambridge, England), 142, 2109-2120.
http://dev.biologists.org/content/142/12/2109
http://dx.doi.org/10.1242/dev.119966
[65]  Maiese, M. (2015) Embodied Selves and Divided Minds—International Perspectives I Philosophy & Psychiatry. Oxford University Press, Oxford.
[66]  Vigh, B. and Vigh-Teichmann, I. (1998) Actual Problems of the Cerebrospinal Fluid-Con- tacting Neurons. Microscopy Research and Technique, 41, 57-83.
http://dx.doi.org/10.1002/(SICI)1097-0029(19980401)41:1<57::AID
-JEMT6>3.0.CO;2-R

[67]  Vigh, B., et al. (2004) The System of Cerebrospinal Fluid-Contacting Neurons. Its Supposed Role in the Nonsynaptic Signal Transmission of the Brain. Histology and histopathology, 19, 607-628.
[68]  Tozzi, A. and Peters, J.F. (2015) Brain Activity on Hypersphere. arXiv: 1512.00036 [q-bio.NC].
https://arxiv.org/ftp/arxiv/papers/1512/1512.00036.pdf
[69]  Peters, J.F., Tozzi, A., Inan, E. and Ramanna, S. (2016) Entropy in Primary Sensory Areas Lower than in Associative Ones: The Brain Lies in Higher Dimensions than the Environment. BioRXiv, 071977.
http://biorxiv.org/content/biorxiv/early/2016/08/29/071977.full.pdf
[70]  Peters, J.F., Inan, E., Tozzi, A. and Ramanna, S. (2016) Primary Evidence of a Donut-Like, Fourth Spatial Dimension in the Brain. BioRXiv, 072397.
http://biorxiv.org/content/biorxiv/early/2016/08/30/072397.full.pdf
[71]  Tozzi, A. (2015) Information Processing in the CNS: A Supramolecular Chemistry? Cognitive Neurodynamics, 9, 463-477.
http://dx.doi.org/10.1007/s11571-015-9337-1
http://arturotozzi.webnode.it/products/kindly-helped-by-karl-friston
-information-processing-in-the-cns-a-supramolecular-chemistry-/

[72]  Messori, C. (2004) Le Metamorfosi della Meraviglia. Riflessioni sui Percorsi della Cono- scenza dall’Età del Bronzo ad Oggi. Maremmi Editori, Firenze Libri, Firenze.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413