全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

A Conformal Preon Model

DOI: 10.4236/oalib.1103262, PP. 1-7

Subject Areas: Particle Physics

Keywords: Preons, Standard Model, Conformal Symmetry, Dark Energy, Dark Matter

Full-Text   Cite this paper   Add to My Lib

Abstract

I consider a preon model for quarks and leptons based on massless constituents having spin 1/2 and charge 1/3 or 0. The color and weak interaction gauge structures can be deduced from the three preon states. Argument is given for unified field theory being based on gravitational and electromagnetic interactions only. Conformal symmetry is introduced in the action of gravity with the Weyl tensor. Electromagnetism is geometrized to conform with gravity. Baryon number non-conservation mechanism is obtained.

Cite this paper

Raitio, R. (2016). A Conformal Preon Model. Open Access Library Journal, 3, e3262. doi: http://dx.doi.org/10.4236/oalib.1103262.

References

[1]  Raitio, R. (1980) A Model of Lepton and Quark Structure. Physica Scripta, 22, 197.
https://doi.org/10.1088/0031-8949/22/3/002
[2]  Raitio, R. (2016) Combinatorial Preon Model for Matter and Unification. Open Access Library Journal, 3, e3032.
[3]  Mannheim, P. (2016) Conformal Invariance and the Metrication of the Fundamental Forces. [arXiv: 1603.08405].
[4]  Mannheim, P. (2016) Mass Generation, the Cosmological Constant Problem, Conformal Symmetry, and the Higgs Boson. [arXiv: 1610.08907].
[5]  Mannheim, P. (2011) Intrinsically Quantum-Mechanical Gravity and the Cosmological Constant Problem. Modern Physics Letters A, 26, 2375.
https://doi.org/10.1142/S0217732311036875
[6]  Mannheim, P. (2012) Making the Case for Conformal Gravity. Foundations of Physics, 42, 388.
https://doi.org/10.1007/s10701-011-9608-6
[7]  Mannheim, P. (2014) PT Symmetry, Conformal Symmetry, and the Metrication of Electromagnetism. [arXiv: 1407.1820].
[8]  Mannheim, P. (2006) Alternatives to Dark Matter and Dark Energy. Progress in Particle and Nuclear Physics, 56, 340.
https://doi.org/10.1016/j.ppnp.2005.08.001
[9]  Einstein, A. and Rosen, N. (1935) The Particle Problem in the General Theory of Relativity. Physical Review, 48, 73.
https://doi.org/10.1103/PhysRev.48.73
[10]  Greenberg, O. (1964) The Color Charge Degree of Freedom in Particle Physics. [arXiv: 0805.0289].
[11]  Bekenstein, J. (1972) Non Existence of Baryon Number for Static Black Holes I and II. Physical Review D, 5, 2403-2412.
https://doi.org/10.1103/PhysRevD.5.2403
[12]  Wheeler, J. (1971) Cortona Symposium on Weak Interactions. Edited by Radicati, L., Accademia Nazionale dei Lincei, Rome.
[13]  Weyl, H. (1918) Sitzsungber. Preuss. Akad. Wiss, 465.
[14]  Fabbri, L. (2008) Higher Order Theories of Gravitation. arXiv:0806.2610.
[15]  Maldacena, J. (2011) Einstein Gravity from Conformal Gravity. arXiv:1105.5632.
[16]  Anastasiou, G. and Olea, R. (2016) From Conformal to Einstein Gravity. Physical Review D, 94, Article ID: 086008. arXiv:1608.07826.
https://doi.org/10.1103/physrevd.94.086008
[17]  Chan, H.-M. and Tsou, S. (2015) The Framed Standard Model (I) and (II).
arXiv:1505.05472, arXiv:1505.05473.
[18]  Chan, H.-M. and Tsou, S. (1998) Physical Consequences of Non-Abelian Duality in the Standard Model. Physical Review D, 57, 2507-2522.
https://doi.org/10.1103/PhysRevD.57.2507
[19]  Penrose, R. (2016) Fashion, Faith, and Fantasy in the New Physics of the Universe. Princeton University Press, Princeton.
https://doi.org/10.1515/9781400880287
[20]  Ivancevic, V. and Ivancevic, T. (2008) Undergraduate Lecture Notes in Topological Quantum Field Theory. arXiv:0810.0344.
[21]  Teleman, C. (2016) Five Lectures on Topological Field Theory. Given at the CRM in Bellaterra, Barcelona.
https://math.berkeley.edu/~teleman/math/barclect.pdf

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413