全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Electronic Properties of NbSe2 over Graphene: A Meticulous Theoretical Analysis

DOI: 10.4236/oalib.1103512, PP. 1-9

Subject Areas: Modern Physics

Keywords: Density Functional Theory, Armchair, Chiral, Zig-Zag, Energy Bands

Full-Text   Cite this paper   Add to My Lib

Abstract

This investigation deals with a consensus electronic property analyses, for NbSe2 over graphene using Density Functional Theory. Depending on how you construct your initial system under investigation, either starting with Armchair, Chiral or Zig-zag for a graphene layer, final different results for the electronic properties should be anticipated. It is critical to take in consideration the brim edges effect in the initial conditions because different final results will be obtained. Energy bands and charge density profiles will be presented for each case under study. For pristine graphene Eg (forbidden energy gap between the Valence and Conduction bands) of 0.24 eV (Armchair), 0.19 eV (Chiral) and 0.13 eV (Zig-zag) were obtained respectively. In addition, defect on the structure (vacany defect) was considered, in order to simulate a real scenario which could be compared to an experimental result while constructing graphene-defect-NbSe2 system. To our knowledge, this is the first time that such a kind of investigation is presented.

Cite this paper

Galvan, D. H. , Antúnez-García, J. and Moyado, S. F. (2017). Electronic Properties of NbSe2 over Graphene: A Meticulous Theoretical Analysis. Open Access Library Journal, 4, e3512. doi: http://dx.doi.org/10.4236/oalib.1103512.

References

[1]  Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Gregoneva, I.V. and Firzov, A.A. (2004) Effect in Atomically Thin Carbon Film. Science, 306, 666-669.
https://doi.org/10.1126/science.1102896
[2]  Castro-Neto, A.H., Guinea, F., Peres, N.M., Novoselov, K.S. and Geim, A.K. (2009) The Electronic Properties of Graphene. Review of Modern Physics, 81, 109-162.
https://doi.org/10.1103/RevModPhys.81.109
[3]  Wallace, P.R. (1947) The Band Theory of Graphite. Physical Review, 71, 622-634.
https://doi.org/10.1103/PhysRev.71.622
[4]  Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. and Firsov, A.A. (2005) Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature, 438, 197-200.
https://doi.org/10.1038/nature04233
[5]  Zhang, Y., Tan, Y.-W., Stormer, H.L. and Kim, P. (2005) Experimental Observation of the Quantum Hall Effect and Barry’s Phase in Graphene. Nature, 438, 201-204.
https://doi.org/10.1038/nature04235
[6]  Zhung, L.M. and Fogler, M.M. (2008) Nonlinear Screening and Ballistic Transport in a Graphene p-n Junction. Physical Review Letters, 100, 116804.1-4.
[7]  Ossipov, A., Titov, M. and Beenaker, C.W.J. (2007) Reentrance Effect in a Graphene n-p-n Junction Coupled to a Superconductor. Physical Review B, 75, 241401(R), 1-4.
[8]  Milton-Pereira Jr., J., Vasilopolous, P. and Peeters, F.M. (2007) Tunable Quantum Dots in Bilayer Graphene. Nano Letters, 7, 946-949.
https://doi.org/10.1021/nl062967s
[9]  Barraza-Jimenez, D., Flores-Hidalgo, M.A. and Galvan, D.H. (2014) Theoretical Study of Bi Layered Graphene Use as Gas Detector. Design and Applications of Nanomaterials for Sensors, Challenge and Advances in Computational Chemistry, 16, 281-287.
[10]  Hill, E.W., Geim, A.K., Novoselov, K., Schedin, F. and Blake, P. (2006) Graphene Spin Valve Devices. IEEE Transactions on Magnetics, 42, 2694-2696.
https://doi.org/10.1109/TMAG.2006.878852
[11]  Wilson, J.A. and Yoffe, A.D. (1969) The Transition Metal Dichalcogenides. Discussion and Interpretation of the Observed Optical, Electrical and Structural Properties. Advances in Physics, 18, 193-335.
https://doi.org/10.1080/00018736900101307
[12]  Henders, W.H. (1997) Dynamic and Magnetic Flux-lines in 2H-Niobium Diselenide. PhD Dissertation, New Brunswick Rutgers, The State University of New Jersey, 1-133.
[13]  Galvan, D.H., Kim, J.-H., Maple, M.B., Avalos-Borja, M. and Adem, E. (2000) Formation of NbSe2 Nanotubes by Electron Irradiation, Fullerene. Science Technology, 8, 127-151.
[14]  Software from Accelrys Inc.
http://www.accelrys.com
[15]  Delley, B. (1990) An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. Journal of Chemical Physics, 92, 508-517.
https://doi.org/10.1063/1.458452
[16]  Delley, B. (2000) From Molecules to Solids with DMol3. Journal of Chemical Physics, 113, 7756-7764.
https://doi.org/10.1063/1.1316015
[17]  Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865
[18]  del Rosario Estrada Cruz, J.F. (2014) Propiedades electrónicas de nano-cúmulos de 1H-MoS_2 crecidos sobre óxido de grafeno. M.Sc. Dissertation, Programa de Posgrado en Física de Materiales, CICESE-UNAM, 10.
[19]  Galvan, D.H., Posada-Amarillas, A. and José-Yacamán, M. (2009) Metallic States at the Edge MoS2 Clusters. Catalysis Letters, 132, 323-328.
https://doi.org/10.1007/s10562-009-0132-7
[20]  Estrada-Cruz, J., Fuentes-Moyado, S. and Galvan, D.H. (2015) Energy Bands of the 1H-MoS2 over Reduced Graphene Oxide. Materials Today Proceedings, 2, 108-112.
https://doi.org/10.1016/j.matpr.2015.04.017
[21]  Zonnevylle, M.C. and Hoffmann, R. (1988) Thiophene Hydrodesulfurization on MoS2; Theoretical Aspects. Surface Science, 199, 320-360.
https://doi.org/10.1016/0039-6028(88)90415-3

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413