全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

A Trend Analysis of Temperature in Selected Stations in Nigeria Using Three Different Approaches

DOI: 10.4236/oalib.1104371, PP. 1-17

Subject Areas: Atmospheric Sciences, Environmental Sciences

Keywords: Trend, Homogenisation, Modified Mann-Kendall, Pre-Whitening, Climate Change

Full-Text   Cite this paper   Add to My Lib

Abstract

This study used daily observation data obtained from the Nigerian Meteorological Agency (NiMet) to investigate the temperature trend of Nigeria from 1981-2015. The data were homogenised using the Quantile Matching (QM) method and Quality Controlled. The data have been transformed into three sets of data with different periods: daily, monthly and yearly. The datasets (daily, monthly and yearly) were checked for autocorrelation and if they were found auto correlated, the Modified Mann Kendall (MMK) and the Pre-Whitening (PW) methods were used and compared, if not the normal Mann Kendall (MK) test was applied. The results showed for the different methods, variations in the trend from one station to another and for the minimum and maximum temperature. These variations were observed in the different methods and data screening the performance of each of the methods in the datasets. The general trend was found to be increasing. The variations in the temperature increase the Diurnal Temperature Range (DTR) that impact human health and increase the probability of occurrence of extreme events.

Cite this paper

Ragatoa, D. S. , Ogunjobi, K. O. , Okhimamhe, A. A. , Francis, S. D. and Adet, L. (2018). A Trend Analysis of Temperature in Selected Stations in Nigeria Using Three Different Approaches. Open Access Library Journal, 5, e4371. doi: http://dx.doi.org/10.4236/oalib.1104371.

References

[1]  Aguilar, E., Barry, A.A., Brunet, M., Ekang, L., Fernandes, A., Massoukina, M., et al. (2009) Changes in Temperature and Precipitation Extremes in Western Central Africa, Guinea Conakry, and Zimbabwe, 1955-2006. Journal of Geophysical Research Atmospheres, 114.
https://doi.org/10.1029/2008JD011010
[2]  Camberlin, P. (2017) Temperature Trends and Variability in the Greater Horn of Africa: Interactions with Precipitation. Climate Dynamics, 48, 477-498.
https://doi.org/10.1007/s00382-016-3088-5
[3]  Gbobaniyi, E., Sarr, A., Sylla, M.B., Diallo, I., Lennard, C., Dosio, A., et al. (2014) Climatology, Annual Cycle and Interannual Variability of Precipitation and Temperature in CORDEX Simulations over West Africa. International Journal of Climatology, 34, 2241-2257.
https://doi.org/10.1002/joc.3834
[4]  James, R. and Washington, R. (2013) Changes in African Temperature and Precipitation Associated with Degrees of Global Warming. Climatic Change, 117, 859-872.
https://doi.org/10.1007/s10584-012-0581-7
[5]  Nikulin, G., Jones, C., Giorgi, F., Asrar, G., Büchner, M., Cerezo-Mota, R., et al. (2012) Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate Simulations. Journal of Climate, 25, 6057-6078.
https://doi.org/10.1175/JCLI-D-11-00375.1
[6]  O’Loughlin, J., Linke, A.M. and Witmer, F.D.W. (2014) Effects of Temperature and Precipitation Variability on the Risk of Violence in Sub-Saharan Africa, 1980-2012. Proceedings of the National Academy of Sciences of the United States of America, 111, 16712-16717.
https://doi.org/10.1073/pnas.1411899111
[7]  Shongwe, M.E., van Oldenborgh, G.J., van den Hurk, B. and van Aalst, M. (2011) Projected Changes in Mean and Extreme Precipitation in Africa under Global Warming. Part II: East Africa. Journal of Climate, 24, 3718-3733.
https://doi.org/10.1175/2010JCLI2883.1
[8]  Bates, B.C., Kundzewicz, Z.W., Wu, S. and Palutikof, J.P., Eds. (2008) Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 p.
[9]  Hansen, J., Sato, M. and Ruedy, R. (2012) Perception of Climate Change. Pro-ceedings of the National Academy of Sciences, 109, E2415-E2423.
https://doi.org/10.1073/pnas.1205276109
[10]  Hulme, M., Doherty, R., Ngara, T., New, M. and Lister, D. (2001) African Climate Change: 1900-2100. Climate Research, 17, 145-168.
https://doi.org/10.3354/cr017145
[11]  Intergovernmental Panel on Climate Change (2014) Climate Change 2014 Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
[12]  Loarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B. and Ackerly, D.D. (2009) The Velocity of Climate Change. Nature, 462, 1052-1055.
https://doi.org/10.1038/nature08649
[13]  UNFCCC (2007) Climate Change: Impacts, Vulnerabilities and Adaptation in Developing Countries. United Nations Framework Convention on Climate Change.
http://unfccc.int/resource/docs/publications/impacts.pdf
[14]  Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Bairlein, F., et al. (2002) Ecological Responses to Recent Climate Change. Nature, 416, 389-395.
https://doi.org/10.1038/416389a
[15]  Wheeler, T. and von Braun, J. (2013) Climate Change Impacts on Global Food Security. Science, 341, 508-513.
https://doi.org/10.1126/science.1239402
[16]  Baart, F., van Koningsveld, M. and Stive, M.J.F. (2012) Trends in Sea-Level Trend Analysis. Journal of Coastal Re-search, 280, 311-315.
https://doi.org/10.2112/JCOASTRES-11A-00024.1
[17]  Brillinger, D.R. (1995) Trend Analysis: Binary-Valued and Point Cases. Stochastic Hydrology and Hydraulics, 9, 207-213.
https://doi.org/10.1007/BF01581719
[18]  Business Dictionary (2016) Trend Analysis.
http://www.businessdictionary.com/definition/trend-analysis.html
[19]  Hamed, K.H. and Rao, A.R. (1998) A Modified Mann-Kendall Trend Test for Auto-Correlated Data. Journal of Hydrology, 204, 182-196.
https://doi.org/10.1016/S0022-1694(97)00125-X
[20]  Hirsch, R.M., Slack, J.R. and Smith, R.A. (1982) Techniques of Trend Analysis for Monthly Water Quality Data. Water Resources Research, 18, 107-121.
https://doi.org/10.1029/WR018i001p00107
[21]  Jain, S.K. and Kumar, V. (2012) Trend Analysis of Rainfall and Temperature Data for India. Current Science, 102, 37-49.
[22]  Kahya, E. and Kalayci, S. (2004) Trend Analysis of Streamflow in Turkey. Journal of Hydrology, 289, 128-144.
https://doi.org/10.1016/j.jhydrol.2003.11.006
[23]  McSweeney, C. (2012) A Climate Trend Analysis of Ethiopia. Famine Early Warning Systems Net-work—Informing Climate Change Adaptation Series.
http://pubs.usgs.gov/fs/2012/3123/
[24]  Partal, T. and Kahya, E. (2006) Trend Analysis in Turkish Precipitation Data. Hydrological Processes, 20, 2011-2026.
https://doi.org/10.1002/hyp.5993
[25]  Pohlert, T. (2016) Package “Trend”: Non-Parametric Trend Tests and Change-Point Detection. R Package, 26.
[26]  Bayazit, M., Onoz, B., Yue, S. and Wang, C. (2004) Comment on “Applicability of Pre-Whitening to Eliminate the Influence of Serial Correlation on the Mann-Kendall Test” by Sheng Yue and Chun Yuan Wang. Water Resources Research, 40, W03806.
https://doi.org/10.1029/2002WR001925
[27]  Blain, G. (2013) The Modified Mann-Kendall Test: On the Performance of Three Variance Correction Approaches. Bragantia, Campinas, 72, 416-425.
https://doi.org/10.1590/brag.2013.045
[28]  Drapela, K. and Drapelova, I. (2011) Application of Mann-Kendall Test and the Sen’s Slope Estimates for Trend Detection in Deposition Data from Bily Kriz (Beskydy Mts., the Czech Republic) 1997-2010. Beskydy, 4, 133-146.
[29]  Gocic, M. and Trajkovic, S. (2013) Analysis of Changes in Meteorological Variables using Mann-Kendall and Sen’s Slope Estimator Statistical Tests in Serbia. Global and Planetary Change, 100, 172-182.
https://doi.org/10.1016/j.gloplacha.2012.10.014
[30]  Hamed, K.H. (2009) Exact Distribution of the Mann-Kendall Trend Test Statistic for Persistent Data. Journal of Hydrology, 365, 86-94.
https://doi.org/10.1016/j.jhydrol.2008.11.024
[31]  Karmeshu, N. (2015) Trend Detection in Annual Temperature & Precipitation using the Mann Kendall Test—A Case Study to Assess Climate Change on Select States in the Northeastern United States.
http://repository.upenn.edu/mes_capstones/47
[32]  Neeti, N. and Eastman, J.R. (2011) A Contextual Mann-Kendall Approach for the Assessment of Trend Significance in Image Time Series. Transactions in GIS, 15, 599-611.
https://doi.org/10.1111/j.1467-9671.2011.01280.x
[33]  Onoz, B. and Bayazit, M. (2012) Block Bootstrap for Mann-Kendall Trend Test of Serially Dependent Data. Hydrological Processes, 26, 3552-3560.
https://doi.org/10.1002/hyp.8438
[34]  Yue, S. and Pilon, P. (2004) A Comparison of the Power of the T Test, Mann-Kendall and Bootstrap Tests for Trend Detection. Hydrological Sciences Journal, 49, 21-37.
https://doi.org/10.1623/hysj.49.1.21.53996
[35]  Yue, S., Pilon, P., Phinney, B. and Cavadias, G. (2002) The Influence of Autocorrelation on the Ability to Detect Trend in Hydrological Series. Hydrological Processes, 16, 1807-1829.
https://doi.org/10.1002/hyp.1095
[36]  Yue, S. and Wang, C.Y. (2002) Applicability of Pre-Whitening to Eliminate the Influence of Serial Correlation on the Mann-Kendall Test. Water Resources Research, 38, 4-1-4-7.
[37]  Akinsanola, A. and Ogunjobi, K. (2014) Analysis of Rainfall and Temperature Variability over Nigeria. Global Journal of Human-Social Science: B Geography, Geo-Sciences, Environmental Disaster Management, 14, 19.
[38]  Oluwatobi, A. and Oluwakemi, O. (2016) Analysis of Trend and Variability of Atmospheric Temperature in Ijebu-Ode. Southwest Nigeria, 6, 25-31.
[39]  National Bureau of Statistics (2013) Annual Abstract of Statistics. National Bureau of Statistics.
[40]  National Bureau of Statistics (2011) Annual Abstract of Statistics. National Bureau of Statistics.
[41]  Wang, X.L. (2008a) Accounting for Autocorrelation in Detecting Mean Shifts in Climate Data Series using the Penalized Maximal T or F Test. Journal of Applied Meteorology and Climatology, 47, 2423-2444.
https://doi.org/10.1175/2008JAMC1741.1
[42]  Wang, X.L. (2008b) Penalized Maximal F Test for Detecting Undocumented Mean Shift without Trend Change. Journal of Atmospheric and Oceanic Technology, 25, 368-384.
https://doi.org/10.1175/2007JTECHA982.1
[43]  Wang, X.L., Wen, Q.H. and Wu, Y. (2007) Penalized Maximal T Test for Detecting Undocumented Mean Change in Climate Data Series. Journal of Applied Meteorology and Climatology, 46, 916-931.
https://doi.org/10.1175/JAM2504.1
[44]  Nie, C., Li, H., Yang, L., Ye, B., Dai, E., Wu, S., Liao, Y., et al. (2012) Spatial and Temporal Changes in Extreme Temperature and Extreme Precipitation in Guangxi. Quaternary International, 263, 162-171.
https://doi.org/10.1016/j.quaint.2012.02.029
[45]  Trewin, B. (2013) A Daily Homogenized Temperature Data Set for Australia. International Journal of Climatology, 33, 1510-1529.
https://doi.org/10.1002/joc.3530
[46]  Wan, H., Wang, X.L. and Swail, V.R. (2010) Homogenization and Trend Analysis of Canadian Near-Surface Wind Speeds. Journal of Climate, 23, 1209-1225.
https://doi.org/10.1175/2009JCLI3200.1
[47]  Wang, X.L., Chen, H., Wu, Y., Feng, Y. and Pu, Q. (2010) New Techniques for the Detection and Adjustment of Shifts in Daily Precipitation Data Series. Journal of Applied Meteorology and Climatology, 49, 2416-2436.
https://doi.org/10.1175/2010JAMC2376.1
[48]  Vincent, L.A., Wang, X.L., Milewska, E.J., Wan, H., Yang, F. and Swail, V. (2012) A Second Generation of Homogenized Canadian Monthly Surface Air Temperature for Climate Trend Analy-sis. Journal of Geophysical Research Atmospheres, 117, D18110.
https://doi.org/10.1029/2012JD017859
[49]  Ceccherini, G., Russo, S., Ameztoy, I., Patricia, C.R. and Carmona-Moreno, C. (2016) Magnitude and Frequency of Heat and Cold Waves in Recent Decades: The Case of South America. Natural Haz-ards and Earth System Sciences, 16, 821-831.
https://doi.org/10.5194/nhess-16-821-2016
[50]  Ahmad, I., Tang, D., Wang, T., Wang, M. and Wagan, B. (2015) Precipitation Trends over Time using Mann-Kendall and Spearman’s Rho Tests in Swat River Basin, Pakistan. Advances in Meteorology, 2015, Article ID: 431860.
[51]  Burkey, J. (2006) A Non-Parametric Monotonic Trend Test Computing Mann-Kendall Tau, Tau-b, and Sen’s Slope Written in Mathworks-MATLAB using Matrix Rotations. King County, Department of Natural Resources and Parks, Science and Technical Services Section, Seattle.
[52]  Danneberg, J. (2012) Changes in Runoff Time Series in Thuringia, Germany-Mann-Kendall Trend Test and Extreme Value Analysis. Advances in Geosciences, 31, 49-56.
https://doi.org/10.5194/adgeo-31-49-2012
[53]  Salami, A.W., Mohammed, A.A., Abdulmalik, Z.H. and Olanlokun, O.K. (2014) Trend Analysis of Hy-dro-Meteorological Variables using the Mann-Kendall Trend Test: Application to the Niger River and the Benue Sub-Basins in Nigeria. International Journal of Technology, 5, 100-110.
https://doi.org/10.14716/ijtech.v5i2.406
[54]  Soltani, M. and Mofidi, A. (2013) Using Mann-Kendall and Time Series Techniques for Statistical Analysis of Long-Term Precipitation in Gorgan Weather Station. World Applied Sciences Journal, 28, 902-908.
[55]  Wang, X.L. and Swail, V.R. (2001) Changes of Extreme Wave Heights in Northern Hemisphere Oceans and Related Atmospheric Circulation Regimes. Journal of Climate, 14, 2204-2221.
https://doi.org/10.1175/1520-0442(2001)014<2204:
COEWHI>2.0.CO;2
[56]  Cheng, J., Xu, Z., Zhu, R., Wang, X., Jin, L., Song, J. and Su, H. (2014) Impact of Diurnal Temperature Range on Human Health: A Systematic Review. International Journal of Biometeorology, 58, 2011-2024.
https://doi.org/10.1007/s00484-014-0797-5

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413