全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Microbial Inoculants Development for Bioremediation of Gasoline and Diesel Contaminated Soil

DOI: 10.4236/oalib.1104449, PP. 1-17

Subject Areas: Soil Science, Microbiology, Environmental Sciences, Ecology

Keywords: Bioremediation, Hydrocarbon Degradation, Inoculant Development, Soil Con-tamination

Full-Text   Cite this paper   Add to My Lib

Abstract

In this study, we describe the development of microbial inoculants for the bioremediation of hydrocarbon-contaminated soils through the enrichment of hydrocarbonoclastic populations in municipal solid waste compost (MSWC). Respirometric analyses were performed along with quantification of total heterotrophic bacteria and ester-linked fatty acid methyl ester (EL-FAME) profiling of the microbial communities of the inoculants. CO2-emission rate increased sharply when the compost received application of water plus gasoline or diesel. After 8 (compost diesel) and 12 days (compost gasoline), we observed a significant increase in the number of heterotrophic bacteria. In inoculants receiving gasoline, FAME markers of fungi predominated throughout the incubation period (18 days). By the end of the incubation period, an increase in FAMEmarker for gram-positive bacteria and a decrease for gram-negative bacteria and actinobacteria were observed. In biodegradation trials (data not shown), the inoculants were very efficient, removing over 99% of hydrocarbons from a heavy soil (73% clay) contaminated with either diesel or gasoline (17,000 mg·Kg﹣1 and 15,000 mg·Kg﹣1, respectively). Inoculants based on MSWC enriched in hydrocarbonoclastic microorganisms may be an effective alternative to improve bioremediation in hydrocarbon-contaminated soils.

Cite this paper

Leal, A. J. , Rodrigues, E. M. , Fernandes, R. D. C. R. , Borges, A. C. , Júlio, A. D. L. , Freitas, F. D. S. and Tótola, M. R. (2018). Microbial Inoculants Development for Bioremediation of Gasoline and Diesel Contaminated Soil. Open Access Library Journal, 5, e4449. doi: http://dx.doi.org/10.4236/oalib.1104449.

References

[1]  Roling, W.F.M., Milner, M.G., Jones, D.M., Lee, K., Daniel, F., Swannell, R.J.P. and Head, I.M. (2002) Robust Hydrocarbon Degradation and Dynamics of Bacterial Communities during Nutrient-Enhanced Oil Spill Bioremediation. Applied and Environmental Microbiology, 68, 5537-5548.
https://doi.org/10.1128/AEM.68.11.5537-5548.2002
[2]  Stroud, J.L., Paton, G.I. and Semple, K.T. (2007) Microbe-Aliphatic Hydrocarbon Interactions in Soil: Implications for Biodegradation and Bioremediation. Journal of Applied Microbiology, 102, 1239-1253.
https://doi.org/10.1111/j.1365-2672.2007.03401.x
[3]  Tyagi, M., da Fonseca, M.M. and de Carvalho, C.C. (2011) Bioaugmentation and Biostimulation Strategies to Improve the Effectiveness of Bioremediation Processes. Biodegradation, 22, 231-241.
https://doi.org/10.1007/s10532-010-9394-4
[4]  Dell’anno, A., Beolchini, F., Rocchetti, L., Luna, G.M. and Danovaro, R. (2012) High Bacterial Biodiversity Increases Degradation Performance of Hydrocarbons during Bioremediation of Contaminated Harbor Marine Sediments. Environmental Pollution, 167, 8-92.
https://doi.org/10.1016/j.envpol.2012.03.043
[5]  Cerqueira, V.S., Peralba, M.C.R., Camargo, F.A.O. and Bento, F.M. (2014) Comparasion of Bioremediation Strategies for Soil Impacted with Petrochemical Oily Sludge. International Biodeterioration & Biodegradation, 95, 338-345.
https://doi.org/10.1016/j.ibiod.2014.08.015
[6]  Mnif, I., Mnif, S., Sahnoun, R., Martouf, S., Ayedi, Y., Ellouze-Chaabouni, S. and Ghribi, D. (2015) Biodegradation of Diesel Oil by a Novel Microbial Consortium: Comparison between Co-Inoculation with Biosurfactants-Producing Strain and Exogenously Added Biosurfactants. Environmental Science and Pollution Research, 22, 14852-14861.
https://doi.org/10.1007/s11356-015-4488-5
[7]  Carmichael, L.M. and Pfaender, F.K. (1997) The Effect of Inorganic and Organic Supplements on the Microbial Degradation of Phenanthrene and Pyrene in Soils. Biodegradation, 8, 1-13.
https://doi.org/10.1023/A:1008258720649
[8]  Straube, W.L., Jones-Meehan, J., Pritchard, P.H. and Jones, W.R. (1999) Bench-Scale Optimization of Bioaugmentation Strategies for Treatment of Soils Contaminated with High Molecular Weight Polyaromatic Hydrocarbons. Resources, Conservation and Recycling, 27, 27-37.
https://doi.org/10.1016/S0921-3449(98)00083-4
[9]  Gogoi, B.K., Dutta , N.N., Goswami, P. and Mohan, T.R.K. (2003) A Case Study of Bioremediation of Petroleum-Hydrocarbon Contaminated Soil at a Crude Oil Spill Site. Advances in Environmental Research, 7, 767-782.
https://doi.org/10.1016/S1093-0191(02)00029-1
[10]  Baptista, S.J., Cammarota, M.C. and Freire, D.D.C. (2005) Production of CO2 in Crude Oil Bioremediation in Clay Soil. Brazilian Archives of Biology and Technology, 48, 249-255.
https://doi.org/10.1590/S1516-89132005000400031
[11]  Jacques, R.J.S., Bento, F.M., Antoniolli, Z.I. and Camargo, F.A.O. (2007) Biorreme- diacao de solos contaminados com hidrocarbonetos aromáticos policíclicos. Ciência Rural, 37, 1192-1201.
https://doi.org/10.1590/S0103-84782007000400049
[12]  Mariano, A.P., Kataoka, A.P.A.G., Angelis, D.F. and Bonotto, D.M. (2007) Laboratory Study on the Bioremediation of Diesel Oil Contaminated Soil from a Petrol Station. Brazilian Journal of Microbiology, 38, 346-353.
https://doi.org/10.1590/S1517-83822007000200030
[13]  Wu, Y., Luo, Y., Zou, D., Ni, J., Liu, W., Teng, Y. and Li, Z. (2008) Bioremediation of Polycyclic Aromatic Hydrocarbons Contaminated Soil with Monilinia sp.: Degradation and Microbial Community Analysis. Biodegradation, 19, 247-257.
https://doi.org/10.1007/s10532-007-9131-9
[14]  Hassanshahian, M., Zeynalipour, M.S. and Musa, F.H. (2014) Isolation and Characterization of Crude Oil Degrading Bacteria from the Persin Gulf (Khorramshahr Provenance). Marine Pollution Bulletin, 82, 39-44.
https://doi.org/10.1016/j.marpolbul.2014.03.027
[15]  Gallego, J.L.R., Loredo, J., Llamas, J.F., Vázquez, F. and Sánchez, J. (2001) Bioremediation of Diesel-Contaminated Soils: Evaluation of Potential in Situ Techniques by Study of Bacterial Degradation. Biodegradation, 12, 325-335.
https://doi.org/10.1023/A:1014397732435
[16]  Trindade, P.V.O., Sobral, L.G., Rizzo, A.C.L., Leite, S.G.F. and Soriano, A.U. (2005) Bioremediation of a Weathered and a Recently Oil-Contaminated Soils from Brazil: A Comparison Study. Chemosfere, 58, 515-522.
https://doi.org/10.1016/j.chemosphere.2004.09.021
[17]  Ruberto, L., Dias, R., Balbo, L.O.A., Vazquez, S.C., Hernandez, E.A. and Mac Cormack, W.P. (2009) Influence of Nutrients Addition and Bioaugmentation on the Hydrocarbon Biodegradation of a Chronically Contaminated Antarctic Soil. Journal of Applied Microbiology, 106, 1101-1110.
https://doi.org/10.1111/j.1365-2672.2008.04073.x
[18]  Aburto-Medina, A., Adetutu, E.M., Aleer, S., Weber, J., Patil, S.S., Sheppard, P.J., Ball, A.S. and Juhasz, A.L. (2015) Comparison of Indigenous and Exogenous Microbial Populations during Slurry Phase Biodegradation of Long-Term Hydrocarbon-Contaminated Soil. Biodegradation, 23, 813-822.
https://doi.org/10.1007/s10532-012-9563-8
[19]  Sarkar, D., Ferguson, M., Datta, R. and Birnbaum, S. (2000) Bioremediation of Petroleum Hydrocarbons in Contaminated Soils: Comparison of Biosolids Addition, Carbon Supplementation, and Monitored Natural Attenuation. Environmental Pollution, 136, 187-195.
https://doi.org/10.1016/j.envpol.2004.09.025
[20]  Tejada, M., Gonzalez, J.L., Hernandez, M.T. and Garcia, C. (2008) Application of Different Organic Amendments in a Gasoline Contaminated Soil: Effect on Soil Microbial Properties. Bioresource Technology, 99, 2872-2880.
https://doi.org/10.1016/j.biortech.2007.06.002
[21]  Ishii, K., Fukui, M. and Takii, S. (2000) Microbial Succession during a Composting Process as Evaluated by Denaturing Gradient Gel Electrophoresis Analysis. Journal of Applied Microbiology, 89, 768-777.
https://doi.org/10.1046/j.1365-2672.2000.01177.x
[22]  Namkoong, W., Hwang, E.Y., Park, J.S. and Choi, J.Y. (2002) Bioremediation of Diesel-Contaminated Soil with Composting. Environmental Pollution, 119, 23-31.
https://doi.org/10.1016/S0269-7491(01)00328-1
[23]  Steger, K., Jarvis, A., Sven, S. and Sundh, I. (2003) Comparison of Signature Lipid Methods to Determine Microbial Community Structure in Compost. Journal of Microbiological Methods, 55, 371-382.
https://doi.org/10.1016/S0167-7012(03)00187-8
[24]  Schutter, M.E. and Dick, R.P. (2000) Comparison of Fatty Acid Methyl Ester (FAME) Methods for Characterizing Microbial Communities. Soil Science Society of America Journal, 64, 1659-1668.
https://doi.org/10.2136/sssaj2000.6451659x
[25]  Kato, K. and Miura, N. (2008) Effect of Matured Compost as a Bulking and Inoculating Agent on the Microbial Community and Maturity of Cattle Manure Compost. Bioresource Technology, 99, 3372-3380.
https://doi.org/10.1016/j.biortech.2007.08.019
[26]  Klamer, M. and Baath, E. (1998) Microbial Community Dynamics during Composting of Straw Material Studied using Phospholipid Fatty Acid Analysis. FEMS Microbiology Ecology, 27, 9-20.
https://doi.org/10.1111/j.1574-6941.1998.tb00521.x
[27]  Steger, K., Jarvis, A., Vasara, T., Romantschuk, M. and Sundh, I. (2007) Effects of Differing Temperature Management on Development of Actinobacteria Populations during Composting. Research in Microbiology, 158, 617-624.
https://doi.org/10.1016/j.resmic.2007.05.006
[28]  Steger, K., Eklind, Y., Olsson, J. and Sundh, I. (2005) Microbial Community Growth and Utilization of Carbon Constituents during Thermophilic Composting at Different Oxygen Levels. Microbial Ecology, 50, 163-171.
https://doi.org/10.1007/s00248-004-0139-y
[29]  O’Leary W.M. and Wilkinson S.G. (1988) Gram-Positive Bacteria. In: Ratledge, C. and Wilkinson, S.G., Eds., Microbial Lipids, Academic Press, London, 117-201.
[30]  Eisentraeger, A., Maxam, G., Rila, J.P. and Dott, W. (2000) A Stepwise Procedure for Assessment of the Microbial Respiratory Activity of Soil Samples Contaminated with Organic Compounds. Ecotoxicology and Environmental Safety, 47, 65-73.
https://doi.org/10.1006/eesa.2000.1933
[31]  Miles, R.A. and Doucette, W.J. (2001) Assessing the Aerobic Biodegradability of 14 Hydrocarbons in Two Soils using a Simple Microcosm/Respiration Method. Chemosfere, 45, 1085-1090.
https://doi.org/10.1016/S0045-6535(01)00012-1
[32]  Semple, K.T., Dew, N.M., Doick, K.J. and Rhodes, A.H. (2006) Can Microbial Mineralization Be Used to Estimate Microbial Availability of Organic Contaminants in Soil? Environmental Pollution, 140, 164-172.
https://doi.org/10.1016/j.envpol.2005.06.009
[33]  Montagnolli, R.I., Lopes, P.R.M. and Bidoia, E.D. (2015) Assessing Bacillus subtilis biosurfactants Effects on the Biodegradation of Petroleum Products. Environmental Monitoring and Assessment, 187, 4116.
https://doi.org/10.1007/s10661-014-4116-8
[34]  Olanipekun, O.O., Ogumbayo, A.O., Nwachukwu, S.C.U. and Bello, R.A. (2015) Comparative Study of Microbial Activities and Biodegraadtion-Abilities of Undefined Consortium in Some Hydrocarbon Contaminated Sites in the Niger Delta, Nigeria. Journal of Environmental Protection, 6, 138-145.
https://doi.org/10.4236/jep.2015.62016
[35]  Aspray, T.J., Carvalho, D.J.C. and Philp, J.C. (2007) Application of Soil Slurry Respirometry to Optimise and Subsequently Monitor ex Situ Bioremediation of Hydrocarbon-Contaminated Soils. International Biodeterioration & Biodegradation, 60, 279-284.
https://doi.org/10.1016/j.ibiod.2007.04.004
[36]  Al-Saleh, E. and Akbar, A. (2015) Occurrence of Pseudomonas aeruginosa in Kuwait Soil. Chemosphere, 120, 100-107.
https://doi.org/10.1016/j.chemosphere.2014.06.031
[37]  Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N. and Naidu, R. (2011) Bioremediation Approaches for Organic Pollutants: A Critical Perspective. Environment International, 37, 1362-1375.
https://doi.org/10.1016/j.envint.2011.06.003
[38]  Sanni, G.O., Coulon, F. and McGenity, T.J. (2015) Dynamics and Distribution of Bacterial and Archaeal Communities in Oil-Contaminated Temperate Coastal Mudflat Mesocosms. Environmental Science and Pollution Research International, 22, 15230-15247.
https://doi.org/10.1007/s11356-015-4313-1
[39]  Labud, V., Garcia, C. and Hernandez, T. (2007) Effect of Hydrocarbon Pollution on the Microbial Properties of a Sandy and a Clay Soil. Chemosphere, 66, 1863-1871.
https://doi.org/10.1016/j.chemosphere.2006.08.021
[40]  Osterreicher-Cunha, P., Vargas, E.A.R., Guimar?oes, J.R.D., Lago, G.P., Antunes, F.S. and Silva, M.I.P. (2009) Effect of Ethanol on the Biodegradation of Gasoline in an Unsaturated Tropical Soil. International Biodeterioration & Biodegradation, 63, 208-216.
https://doi.org/10.1016/j.ibiod.2008.09.004
[41]  Isken, S. and Bont, J.A.M. (1996) Active Efflux of Toluene in a Solvent-Resistant Bacterium. Journal of Bacteriology, 178, 6056-6058.
https://doi.org/10.1128/jb.178.20.6056-6058.1996
[42]  Isken, S. and Bont, J.A.M. (1998) Bacteria Tolerant to Organic Solvents. Extremophiles, 2, 229-238.
https://doi.org/10.1007/s007920050065
[43]  Ramos, J.L., Duque, E., Gallegos, M.T., Godoy, P., Ramos-González, M.I., Rojas, A., Terán, W. and Segura, A. (2002) Mechanisms of Solvente Tolerance in Gram-Negative Bactéria. Annual Review of Microbiology, 56, 743-768.
https://doi.org/10.1146/annurev.micro.56.012302.161038
[44]  Duldhardt, I., Nijenhuis, I., Schauer, F. and Heipieper, H.J. (2007) Anaerobically Grown Thauera aromatica, Desulfococcus multivorans, Geobacter sulfurreducens Are More Sensitive towards Organic Solvents than Aerobic Bacteria. Applied Microbiology and Biotechnology, 77, 705-771.
https://doi.org/10.1007/s00253-007-1179-2
[45]  Udaondo, Z., Molina, L., Daniels, C., Gómez, M.J., Molina-Henares, M.A., Matilla, M.A., Roca, A., Fernández, M., Duque, E., Segura, A. and Ramos, J.L. (2013) Metabolic Potential of the Organic-Solvent Tolerant Pseudomonas putida DOT-T1E Deduced from Its Annotated Genome. Microbial Biotechnology, 6, 598-611.
https://doi.org/10.1111/1751-7915.12061
[46]  Heipieper, J.H. and Bont, J.A.M. (1994) Adaptation of Pseudomonas putida S12 to Ethanol and Toluene at the Level of Fatty Acid Composition of Membranes. Applied and Environmental Microbiology, 60, 4440-4444.
[47]  Ramos, J.L., Cuenca, M.S., Molina-Santiago, C., Segura, A., Duque, E., Gómez-García, M.R., Udaondo, Z. and Roca, A. (2015) Mechanisms of Solvente Resistance Mediated by Interplay of Cellular Factors in Pseudomonas putida. FEMS Microbiology Reviews, 39, 555-566.
https://doi.org/10.1093/femsre/fuv006
[48]  Sikkema, J., Bont, J.A.M. and Poolman, B. (1995) Mechanisms of Membrane Toxicity of Hydrocarbons. Microbiological Reviews, 59, 201-222.
[49]  Uhl, J., Hein, E.M., Hayen, H., Schmid, A. and Blank, L.M. (2012) The Glycerophospholipid Inventory of Pseudomonas putida Is Conserved Etween Strains and Enables Growth Condition-Related Alterations. Microbial Biotechnology, 5, 45-58.
[50]  Aono, R. and Kobayashi, H. (1997) Cell Surface Properties of Organic Solvent-Tolerant Mutants of Escherichia coli K-12. Applied and Environmental Microbiology, 63, 3637-3642.
[51]  Neumann, G., Veeranagouda, Y., Karegoudar, T.B., Sahin, O., Mausezahl, M., Nadja, K., Kappelmeyer, U. and Heipieper, H.J. (2005) Cells of Pseudomonas putida and Enterobacter sp. Adapt to Toxic Organic Compounds by Increasing Their Size. Extremophiles, 9, 163-168.
https://doi.org/10.1007/s00792-005-0431-x
[52]  Amir, S., Merlina, G., Pinelli, E., Wintertonc, P., Revel, J.C. and Hafidid, M. (2008) Microbial Community Dynamics during Composting of Sewage Sludge and Straw Studied through Phospholipid and Neutral Lipid Analysis. Journal of Hazardous Materials, 159, 593-601.
https://doi.org/10.1016/j.jhazmat.2008.02.062
[53]  Thompson, I.P., Van Der Gast, C.J., Ciric, L. and Singer, A.C. (2005) Bioaugmentation for Bioremediation: The Challenge of Strain Selection. Environmental Microbiology, 7, 909-915.
https://doi.org/10.1111/j.1462-2920.2005.00804.x
[54]  Margesin, R., Hammerle, M. and Tscherko, D. (2007) Microbial Activity and Community Composition during Bioremediation of Diesel-Oil-Contaminated Soil: Effects of Hydrocarbon Concentration, Fertilizers, and Incubation Time. Microbial Ecology, 53, 259-269.
https://doi.org/10.1007/s00248-006-9136-7
[55]  Golovlev, E.L. (2001) Ecological Strategy of Bacteria: Specific Nature of the Problem. Microbiology, 70, 379-383.
https://doi.org/10.1023/A:1010476507199
[56]  Rodrigues, E.M., Kalks, K.H.M. and Tótola, M.R. (2015) Prospect, Isolation, and Characterization of Microorganisms for Potential Use in Cases of Oil Boiremediation along the Coast of Trindade Island, Brazil. Journal of Environmental Management, 156, 15-22.
https://doi.org/10.1016/j.jenvman.2015.03.016

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413