全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Spreading Dynamics of a Social Information Model with Overlapping Community Structures on Complex Networks

DOI: 10.4236/oalib.1102701, PP. 1-11

Subject Areas: Network Modeling and Simulation

Keywords: Social Information Spreading, Overlap Parameter, Community Structures, Complex Networks, Threshold Value

Full-Text   Cite this paper   Add to My Lib

Abstract

In this paper, we present a SARS (susceptible-adopted-removed-susceptible) social information spreading model with overlapping community structures on complex networks. Using the mean field theory, the spreading dynamic of the model has been studied. At first, we derived the spreading critical threshold value and equilibriums. Theoretical results indicate that the existence of equilibriums is determined by threshold value. The threshold value is obviously dependent on the topology of underlying networks. Furthermore, the globally asymptotically stable equilibriums are proved in detail. The overlap parameter of community structures can't change the threshold value, but it can influence the extent of the social information spreading. Numerical simulations confirmed the analytical results.

Cite this paper

Liu, X. , Li, T. , Wang, Y. and Wan, C. (2016). Spreading Dynamics of a Social Information Model with Overlapping Community Structures on Complex Networks. Open Access Library Journal, 3, e2701. doi: http://dx.doi.org/10.4236/oalib.1102701.

References

[1]  Strogatz, S.H. (2001) Exploring Complex Networks. Nature, 410, 268-276.
http://dx.doi.org/10.1038/35065725
[2]  Albert, R. and Barabási, A.-L. (2002) Statistical Mechanics of Complex Networks. Reviews of Modern Physics, 74, 47- 97.
http://dx.doi.org/10.1103/RevModPhys.74.47
[3]  Newman, M.E.J. (2003) The Structure and Function of Complex Networks. SIAM Review, 45, 167-256.
http://dx.doi.org/10.1137/S003614450342480
[4]  Wasserman, S. (1994) Social Network Analysis: Methods and Applications. Vol. 8. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511815478
[5]  Dowling, J.E. (2002) Proceedings of the National Academy of Sciences of the United States of America. Nutrition Reviews, 99, 7821.
[6]  Zhao, L.J. and Wang, J.J. (2012) SIHR Rumor Spreading Model in Social Networks. Physica A, 391, 2444-2453.
http://dx.doi.org/10.1016/j.physa.2011.12.008
[7]  Newman, M.E.J. and Forest, S. (2002) Email Networks and the Spread of Viruses. Physical Review E, 66, Article ID: 035101.
[8]  Smith, R.D. (2002) Instant Messaging as a Scale-Free Network. arXiv preprint cond-mat, 0206378..
[9]  Csanyi, G. and Szendroi, B. (2004) Structure of a Large Social Networks. Physical Review E, 69, Article ID: 036131.
http://dx.doi.org/10.1103/physreve.69.036131
[10]  Wang, F. and Moreno, Y. (2006) Structure of Peer-To-Peer Social Network. Physical Review E, 73, Article ID: 036123.
http://dx.doi.org/10.1103/physreve.73.036123
[11]  Pittel, B. (1990) On a Daley-Kendall Model of Random Rumours. Journal of Applied Probability, 27, 14-27.
http://dx.doi.org/10.2307/3214592
[12]  Lefevre, C. and Picard, P. (1994) Distribution of the Final Extent of a Rumor Process. Journal of Applied Probability, 31, 244-249.
http://dx.doi.org/10.2307/3215250
[13]  Gu, J. and Li, W. (2008) The Effect of the Forget-Remember Mechanism on Spreading. The European Physical Journal B, 62, 247-255.
http://dx.doi.org/10.1140/epjb/e2008-00139-4
[14]  Draief, M. (2006) Epidemic Processes on Complex Networks. Physica A, 363, 120-131.
http://dx.doi.org/10.1016/j.physa.2006.01.054
[15]  Wang, J. (2007) Epidemic Spreading on Uncorrelated Heterogenous Networks with Non-Uniform Transmission. Physica A, 382, 715-721.
http://dx.doi.org/10.1016/j.physa.2007.04.034
[16]  Peng, C., Jin, X. and Shi, M. (2010) Epidemic Threshold and Immunization on Generalized Networks. Physica A: Statistical Mechanics and Its Applications, 389, 549-560.
http://dx.doi.org/10.1016/j.physa.2009.09.047
[17]  Li, T., Wang, Y.M. and Guan, Z.-H. (2014) Spreading Dynamics of a SIQRS Epidemic Model on Scale-Free Networks. Communications in Nonlinear Science and Numerical Simulation, 19, 686-692.
http://dx.doi.org/10.1016/j.cnsns.2013.07.010
[18]  Pastor-Satorras, R. and Vespignani, A. (2001) Epidemic Spreading in Scale-Free Networks. Physical Review Letters, 86, 3200.
http://dx.doi.org/10.1103/PhysRevLett.86.3200
[19]  Boguná, M., Pastor-Satorras, R. and Vespignani, A. (2003) Absence of Epidemic Threshold in Scale-Free Networks with Degree Correlations. Physical Review Letters, 90, Article ID: 28701.
http://dx.doi.org/10.1103/PhysRevLett.90.028701
[20]  Liu, J. and Zhang, T. (2011) Epidemic Spreading of an SEIRS Model in Scale-Free Networks. Communications in Nonlinear Science and Numerical Simulation, 16, 3375-3384.
http://dx.doi.org/10.1016/j.cnsns.2010.11.019
[21]  Liu, J.-G., Lin, J.-H., Guo, Q. and Zhou, T. (2016) Locating Influential Nodes via Dynamics-Sensitive Centrality. Scientific Reports, 6, Article No. 21380.
http://dx.doi.org/10.1038/srep21380
[22]  Wu, F. and Huberman, B.A. (2007) Novelty and Collective Attention. Proceedings of the National Academy of Sciences of the United States of America, 104, 17599-17601.
http://dx.doi.org/10.1073/pnas.0704916104
[23]  Miritello, G., Moro, E. and Lara, R. (2011) Dynamical Strength of Social Ties in Information Spreading. Physical Review E, 83, Article ID: 045102.
http://dx.doi.org/10.1103/PhysRevE.83.045102
[24]  Crane, R. and Sornette, D. (2008) Robust Dynamic Classes Revealed by Measuring the Response Function of Social System. Proceedings of the National Academy of Sciences of the United States of America, 105, 15649-15653.
http://dx.doi.org/10.1073/pnas.0803685105
[25]  Dodds, P.S. and Watts, D.J. (2004) Universal Behavior in a Generalized Model of Contagion. Physical Review Letters, 92, Article ID: 218701.
http://dx.doi.org/10.1103/PhysRevLett.92.218701
[26]  Medo, M., Zhang, Y.C. and Zhou, T. (2009) Adaptive Model for Recommendation of News. EPL (Europhysics Letters), 88, Article ID: 38005.
http://dx.doi.org/10.1209/0295-5075/88/38005
[27]  Cimini, G., Medo, M., Zhou, T., Wei, D. and Zhang, Y.-C. (2011) Heterogeneity, Quality, and Reputation in an Adaptive Recommendation Model. The European Physical Journal B, 80, 201-208.
http://dx.doi.org/10.1140/epjb/e2010-10716-5
[28]  Lü, L.Y., Chen, D.B. and Zhou, T. (2011) The Small World Yields the Most Effective Information Spreading. New Journal of Physics, 13, Article ID: 123005.
http://dx.doi.org/10.1088/1367-2630/13/12/123005
[29]  Wang, X., Cao, X.C., Jin, D., Cao, Y.X. and He, D.X. (2016) The (Un)supervised NMF Methods for Discovering Overlapping Communities as Well as Hubs and Outliers in Networks. Physica A: Statistical Mechanics and Its Applications, 446, 22-34.
http://dx.doi.org/10.1016/j.physa.2015.11.016
[30]  Li, T., Liu, X.D., Wu, J., Wan, C., Guan, Z.-H. and Wang, Y.M. (2016) An Epidemic Spreading Model on Adaptive Scale-Free Networks with Feedback Mechanism. Physica A: Statistical Mechanics and Its Applications, 450, 649-656.
http://dx.doi.org/10.1016/j.physa.2016.01.045
[31]  Thieme, H.R. (1993) Persistence under Relaxed Point-Dissipativity (with Application to an Endemic Model). SIAM Journal on Mathematical Analysis, 24, 407-435.
http://dx.doi.org/10.1137/0524026
[32]  Smith, H.L. and De Leenheer, P. (2003) Virus Dynamics: A Global Analysis. SIAM Journal on Mathematical Analysis, 63, 1313-1327.
http://dx.doi.org/10.1137/s0036139902406905

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413