全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

The Global Solar Radiation in the Southern Region of Ecuador

DOI: 10.4236/oalib.1105183, PP. 1-19

Subject Areas: Aerography, Atmospheric Sciences

Keywords: Hottel Model, Solar Radiation, Orographic Shadows

Full-Text   Cite this paper   Add to My Lib

Abstract

In this work an approach to the theoretical solar radiation in the South Region of Ecuador is presented, using the Hottel Model ([1] [2]), considering the cloudiness and the topography Shadows. The maps of Global Solar Radiation are shown for the months of January, August and Annual one, considering the heights over the middle sea level extracted of the Digital Elevation Model. This work will allow specialists and engineers to know the most favorable areas for the location of photovoltaic or photothermic plants in the southern region of Ecuador. The effects have been analyzed by the orography and the methods used were discussed. The role of the orography is analyzed to improve the values’ product of the modeling of the solar radiation. Conclusions and recommendations are given.

Cite this paper

Alvarez, O. H. and Montano, T. E. (2019). The Global Solar Radiation in the Southern Region of Ecuador. Open Access Library Journal, 6, e5183. doi: http://dx.doi.org/10.4236/oalib.1105183.

References

[1]  Passamai, V.J. (2000) Determinación de radiación solar horaria para días claros mediante planilla de cálculo. Avances en Energías Renovables y Medio Ambiente. http://www.unsa.edu.ar/~passamai/passam2.pdf
[2]  Myers, D.R. (2003) Solar Radiation Modeling and Measurements for Renewable Energy Applications: Data and Model Quality. International Expert Conference on Mathematical Modeling of Solar Radiation and Daylight—Challenges for the 21st Century Edinburgh, Scotland, 15-16 September 2003, 15 p.
[3]  Hottel, H.C. (1976) A Simple Model for Estimating the Transmittance of Direct Solar Radiation through Clear Atmospheres. Solar Energy, 18, 129.
https://doi.org/10.1016/0038-092X(76)90045-1
[4]  NASA (2013) Surface Meteorology and Solar Energy.
https://eosweb.larc.nasa.gov/cgibin/sse/sse.cgi? s01#s01
https://eosweb.larc.nasa.gov/cgi-bin/sse/grid.cgi?&num
[5]  Wilcox, S., Bin Mahfoodh, M., Al-Abbadi, N., Alawaji, S. and Myers, D. (2001) Improving Global Solar Radiation Measurements Using Zenith Angle Dependent Calibration Factors. In Forum 2001 Solar Energy, The Power to Choose. American Solar Energy Society, Washington DC.
[6]  Gopinathan, K. and Soler, A. (1995) Diffuse Radiation Models and Monthly-Average, Daily, Diffuse Data for a Wide Latitude Range. Energy, 20, 657-667.
https://doi.org/10.1016/0360-5442(95)00004-Z
[7]  Guevara Vásquez, S. (2003) Estimación de la Radiación Solar. UNATSABAR, Lima.
[8]  Gueymard, C.A. (2014) Progress in Direct Irradiance Modeling and Validation. Proceedings of ASES Annual Confefernce, Phoenix, AZ, 2010, 1070-1076.
[9]  Liu, B.Y.H. and Jordan, R. (1960) Interrelationships and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation. Solar Energy, 4, 1-19.
https://doi.org/10.1016/0038-092X(60)90062-1
[10]  Marrodán, J. (2012) Piranómetro Fotovoltaico. Titulación: Ingeniero Técnico In- dustrial Eléctrico, Escuela Técnica Superior de Ingenieros Industriales y de Tele- comunicación, Pamplona, Espa?a.
http://www.academica-e.unavarra.es/bitstream/handle/2454/4670/577682.pdf
[11]  Mendoza, I. and Piedra, D. (2006) Validación y ajuste de modelos de radiación solar directa para la ciudad de Bogotá a partir de datos experimentales. Revista Colombiana de Fisica, 38.
[12]  Sánchez, C., Piedra, D. and Mendoza, I. (2006) Validación y ajuste de modelos de radiación solar directa para la ciudad de Bogotá a partir de datos experimentales tomados en la Universidad Distrital Francisco José de Caldas. Revista Colombiana de Física, 38, 1435-1438.
[13]  Stanhill, G. (1998) Estimation of Direct Solar Beam Irradiance from Measurements of the Duration of Bright Sunshine. International Journal of Climatology, 18, 347-354.
https://doi.org/10.1002/(SICI)1097-0088(19980315)18:3<347::AID-JOC239>3.0.CO;2-O
[14]  álvarez, O., Monta?o, T. and Maldonado, J. (2014) La radiación solar global en la provincia de Loja, evaluación preliminar utilizando el método de Hottel. Ingenius, No. 11, 25.
[15]  Molina, D., álvarez, O. and Monta?o, Th. (Inédito) Softwares para el cálculo de la radiación solar teórica con cielo despejado.
[16]  álvarez, O., Monta?o, T., Quentin, E., Maldonado, J. and Solano, J.C. (2014) La radiación solar global en las provincias El Oro, Loja y Zamora Chinchipe, Ecuador. Utilización de datos de reanálisis de la nubosidad diurna. Revista de Climatología, 14, 25-33.
[17]  USGS. SRTM. Geological Service of the United States.
[18]  http://antongerdelan.net/opengl/kernels.html
[19]  Consejo Nacional de Electricidad (CONELEC) and Corporación para la Investigación Energética (CIE) (2008) Atlas Solar del Ecuador con fines de Generación Eléctrica. Lugar de edición: Registro Instituto Ecuatoriano de Propiedad Intelectual: No. 028462 del 12 de marzo de 2008, No. 028369 del 26 de febrero de 2008, No. 028370 del 26 de febrero de 2008 editorial, 2008. Quito, Agosto 2008, 51.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413