全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

New Configurations and Techniques for Controlling Membrane Bioreactor (MBR) Fouling

DOI: 10.4236/oalib.1106579, PP. 1-18

Subject Areas: Chemical Engineering & Technology

Keywords: Membrane Bioreactor (MBR), Membrane Fouling, Quorum Quenching (QQ), Quorum Sensing (QS), Activated Sludge (AS), Extracellular Polymeric Substances (EPSs)

Full-Text   Cite this paper   Add to My Lib

Abstract

At the worldwide level, with numerous full-scale plants dealing with urban and industrial wastewater, the membrane bioreactor (MBR) process is viewed as a fully developed technique. Nevertheless, membrane fouling constitutes a critical barrier in the larger diffusion of MBR application. This work aims to discuss the new research and development progresses in the MBR technology in terms of fouling mitigation. New arrangements are examined to enhance the comprehension of the latest achievements in MBRs. Employed for biological fouling control, the quorum quenching technique is briefly introduced. As clean methods used for coping with membrane fouling, the ultrasonic technique and the surface grafting methods are also suggested. Several ameliorations focused on the module arrangement, aeration procedures, control setups, surface amendments, low-energy membrane cleaning techniques, or new fouling mitigation procedures, for instance, mechanical cleaning with granular medium, membrane vibration, or electric field. Between such ameliorations, hybrid setups, merging MBR with different techniques, employing prospects of the diverse methods to get the better of regular limitations of the MBRs are the most convenient. Nonetheless, implementing such novel fouling alleviation procedures for large scale MBRs needs more study. Sustainable control of membrane fouling necessitates utilizing more than one single strategy. Even with unceasing enhancements and expansions, fouling control features remain to be fully met.

Cite this paper

Ghernaout, D. (2020). New Configurations and Techniques for Controlling Membrane Bioreactor (MBR) Fouling. Open Access Library Journal, 7, e6579. doi: http://dx.doi.org/10.4236/oalib.1106579.

References

[1]  Krzeminski, P., Leverette, L., Malamis, S. and Katsou, E. (2017) Membrane Bioreactors—A Review on Recent Developments in Energy Reduction, Fouling Control, Novel Configurations, LCA and Market Prospects. Journal of Membrane Science, 527, 207-227. https://doi.org/10.1016/j.memsci.2016.12.010
[2]  Zhang, J., Xiao, K. and Huang, X. (2020) Full-Scale MBR Applications for Leachate Treatment in China: Practical, Technical, and Economic Features. Journal of Hazardous Materials, 389, Article ID: 122138. https://doi.org/10.1016/j.jhazmat.2020.122138
[3]  Couto, C.F., Lange, L.C. and Amaral, M.C.S. (2018) A Critical Review on Membrane Separation Processes Applied to Remove Pharmaceutically Active Compounds from Water and Wastewater. Journal of Water Process Engineering, 26, 156-175. https://doi.org/10.1016/j.jwpe.2018.10.010
[4]  Robles, á., Ruano, M.V., Charfi, A., Lesage, G., Heran, M., Harmand, J., Seco, A., Steyer, J.-P., Batstone, D.J., Kim, J. and Ferrer, J. (2018) A Review on Anaerobic Membrane Bioreactors (AnMBRs) Focused on Modelling and Control Aspects. Bioresource Technology, 270, 612-626. https://doi.org/10.1016/j.biortech.2018.09.049
[5]  Aslam, M., Ahmad, R., Yasin, M., Khan, A.L., Shahid, M.K., Hossain, S., Khan, Z., Jamil, F., Rafiq, S., Bilad, M.R., Kim, J. and Kumar, G. (2018) Anaerobic Membrane Bioreactors for Biohydrogen Production: Recent Developments, Challenges and Perspectives. Bioresource Technology, 269, 452-464. https://doi.org/10.1016/j.biortech.2018.08.050
[6]  Drews, A. (2010) Membrane Fouling in Membrane Bioreactors—Characterisation, Contradictions, Cause and Cures. Journal of Membrane Science, 363, 1-28. https://doi.org/10.1016/j.memsci.2010.06.046
[7]  Meng, F., Chae, S.-R., Shin, H.-S., Yang, F. and Zhou, Z. (2011) Recent Advances in Membrane Bioreactors: Configuration Development, Pollutant Elimination, and Sludge Reduction. Environmental Engineering Science, 29, 139-160. https://doi.org/10.1089/ees.2010.0420
[8]  Meng, F., Zhang, S., Oh, Y., Zhou, Z., Shin, H.-S. and Chae, S.-R. (2017) Fouling in Membrane Bioreactors: An Updated Review. Water Research, 114, 151-180. https://doi.org/10.1016/j.watres.2017.02.006
[9]  Fenu, A., Guglielmi, G., Jimenez, J., Spèrandio, M., Saroj, D., Lesjean, B., Brepols, C., Thoeye, C. and Nopens, I. (2010) Activated Sludge Model (ASM) Based Modelling of Membrane Bioreactor (MBR) Processes: A Critical Review with Special Regard to MBR Specificities. Water Research, 44, 4272-4294. https://doi.org/10.1016/j.watres.2010.06.007
[10]  Naessens, W., Maere, T. and Nopens, I. (2012) Critical Review of Membrane Bioreactor Models—Part 1: Biokinetic and Filtration Models. Bioresource Technology, 122, 95-106. https://doi.org/10.1016/j.biortech.2012.05.070
[11]  Naessens, W., Maere, T., Ratkovich, N., Vedantam, S. and Nopens, I. (2012) Critical Review of Membrane Bioreactor Models—Part 2: Hydrodynamic and Integrated Models. Bioresource Technology, 122, 107-118. https://doi.org/10.1016/j.biortech.2012.05.071
[12]  Zuthi, M.F.R., Ngo, H.H., Guo, W.S., Zhang, J. and Liang, S. (2013) A Review towards Finding a Simplified Approach for Modelling the Kinetics of the Soluble Microbial Products (SMP) in an Integrated Mathematical Model of Membrane Bioreactor (MBR). International Biodeterioration & Biodegradation, 85, 466-473. https://doi.org/10.1016/j.ibiod.2013.03.032
[13]  Bagheri, M., Akbari, A. and Mirbagheri, S.A. (2019) Advanced Control of Membrane Fouling in Filtration Systems Using Artificial Intelligence and Machine Learning Techniques: A Critical Review. Process Safety and Environmental Protection, 123, 229-252. https://doi.org/10.1016/j.psep.2019.01.013
[14]  Ozgun, H., Dereli, R.K., Ersahin, M.E., Kinaci, C., Spanjers, H. and van Lier, J.B. (2013) A Review of Anaerobic Membrane Bioreactors for Municipal Wastewater Treatment: Integration Options, Limitations and Expectations. Separation and Purification Technology, 118, 89-104. https://doi.org/10.1016/j.seppur.2013.06.036
[15]  Wang, Z., Ma, J., Tang, C.Y., Kimura, K., Wang, Q. and Han, X. (2014) Membrane Cleaning in Membrane Bioreactors: A review. Journal of Membrane Science, 468, 276-307. https://doi.org/10.1016/j.memsci.2014.05.060
[16]  Skouteris, G., Saroj, D., Melidis, P., Hai, F.I. and Ouki, S. (2015) The Effect of Activated Carbon Addition on Membrane Bioreactor Processes for Wastewater Treatment and Reclamation—A Critical Review. Bioresource Technology, 185, 399-410. https://doi.org/10.1016/j.biortech.2015.03.010
[17]  Le-Clech, P., Chen, V. and Fane, T.A.G. (2006) Fouling in Membrane Bioreactors Used in Wastewater Treatment. Journal of Membrane Science, 284, 17-53. https://doi.org/10.1016/j.memsci.2006.08.019
[18]  Yusuf, Z., Abdul Wahab, N. and Sahlan, S. (2016) Fouling Control Strategy for Submerged Membrane Bioreactor Filtration Processes Using Aeration Airflow, Backwash, and Relaxation: A Review. Desalination and Water Treatment, 57, 17683-17695. https://doi.org/10.1080/19443994.2015.1086893
[19]  Scholes, E., Verheyen, V. and Brook-Carter, P. (2016) A Review of Practical Tools for Rapid Monitoring of Membrane Bioreactors. Water Research, 102, 252-262. https://doi.org/10.1016/j.watres.2016.06.031
[20]  Holloway, R.W., Achilli, A. and Cath, T.Y. (2015) The Osmotic Membrane Bioreactor: A Critical Review. Environmental Science: Water Research & Technology, 1, 581-605. https://doi.org/10.1039/C5EW00103J
[21]  Wang, X., Chang, V.W.C. and Tang, C.Y. (2016) Osmotic Membrane Bioreactor (OMBR) Technology for Wastewater Treatment and Reclamation: Advances, Challenges, and Prospects for the Future. Journal of Membrane Science, 504, 113-132. https://doi.org/10.1016/j.memsci.2016.01.010
[22]  Song, X., Xie, M., Li, Y., Li, G. and Luo, W. (2018) Salinity Build-Up in Osmotic Membrane Bioreactors: Causes, Impacts, and Potential Cures. Bioresource Technology, 257, 301-310. https://doi.org/10.1016/j.biortech.2018.02.101
[23]  Li, C., Cabassud, C. and Guigui, C. (2015) Evaluation of Membrane Bioreactor on Removal of Pharmaceutical Micropollutants: A Review. Desalination and Water Treatment, 55, 845-858. https://doi.org/10.1080/19443994.2014.926839
[24]  Taheran, M., Brar, S.K., Verma, M., Surampalli, R.Y., Zhang, T.C. and Valero, J.R. (2016) Membrane Processes for Removal of Pharmaceutically Active Compounds (PhACs) from Water and Wastewaters. Science of the Total Environment, 547, 60-77. https://doi.org/10.1016/j.scitotenv.2015.12.139
[25]  Gu, Y., Huang, J., Zeng, G., Shi, L., Shi, Y. and Yi, K. (2018) Fate of Pharmaceuticals during Membrane Bioreactor Treatment: Status and Perspectives. Bioresource Technology, 268, 733-748. https://doi.org/10.1016/j.biortech.2018.08.029
[26]  Mutamim, N.S.A., Noor, Z.Z., Hassan, M.A.A. and Olsson, G. (2012) Application of Membrane Bioreactor Technology in Treating High Strength Industrial Wastewater: A Performance Review. Desalination, 305, 1-11. https://doi.org/10.1016/j.desal.2012.07.033
[27]  Jegatheesan, V., Pramanik, B.K., Chen, J., Navaratna, D., Chang, C.-Y. and Shu, L. (2016) Treatment of Textile Wastewater with Membrane Bioreactor: A Critical Review. Bioresource Technology, 204, 202-212. https://doi.org/10.1016/j.biortech.2016.01.006
[28]  Wu, B. (2019) Membrane-Based Technology in Greywater Reclamation: A Review. Science of the Total Environment, 656, 184-200. https://doi.org/10.1016/j.scitotenv.2018.11.347
[29]  Ghernaout, D., Alshammari, Y., Alghamdi, A., Aichouni, M., Touahmia, M. and Ait Messaoudene, N. (2018) Water Reuse: Extenuating Membrane Fouling in Membrane Processes. International Journal of Environmental Chemistry, 2, 1-12. https://doi.org/10.11648/j.ijec.20180201.11
[30]  Lin, H., Peng, W., Zhang, M., Chen, J., Hong, H. and Zhang, Y. (2013) A Review on Anaerobic Membrane Bioreactors: Applications, Membrane Fouling and Future Perspectives. Desalination, 314, 169-188. https://doi.org/10.1016/j.desal.2013.01.019
[31]  Xiao, K., Liang, S., Wang, X., Chen, C. and Huang, X. (2019) Current State and Challenges of Full-Scale Membrane Bioreactor Applications: A Critical Review. Bioresource Technology, 271, 473-481. https://doi.org/10.1016/j.biortech.2018.09.061
[32]  Song, X., Luo, W., Hai, F.I., Price, W.E., Guo, W., Ngo, H.H. and Nghiem, L.D. (2018) Resource Recovery from Wastewater by Anaerobic Membrane Bioreactors: Opportunities and Challenges. Bioresource Technology, 270, 669-677. https://doi.org/10.1016/j.biortech.2018.09.001
[33]  Ait Messaoudene, N., Naceur, M.W., Ghernaout, D., Alghamdi, A. and Aichouni, M. (2018) On the Validation Perspectives of the Proposed Novel Dimensionless Fouling index. International Journal of Advances in Applied Sciences, 5, 116-122. https://doi.org/10.21833/ijaas.2018.07.014
[34]  Metcalf, E., Ed. (2003) Wastewater Engineering: Treatment and Reuse. 4th Edition, McGraw-Hill Companies, Inc., New York.
[35]  Meng, F., Chae, S.-R., Drews, A., Kraume, M., Shin, H.-S. and Yang, F. (2009) Recent Advances in Membrane Bioreactors (MBRs): Membrane Fouling and Membrane Material. Water Research, 43, 1489-1512. https://doi.org/10.1016/j.watres.2008.12.044
[36]  Shi, Y., Huang, J., Zeng, G., Gu, Y., Chen, Y., Hu, Y., Tang, B., Zhou, J., Yang, Y. and Shi, L. (2017) Exploiting Extracellular Polymeric Substances (EPS) Controlling Strategies for Performance Enhancement of Biological Wastewater Treatments: An Overview. Chemosphere, 180, 396-411. https://doi.org/10.1016/j.chemosphere.2017.04.042
[37]  Judd, S.J. (2017) Membrane Technology Costs and Me. Water Research, 122, 1-9. https://doi.org/10.1016/j.watres.2017.05.027
[38]  Judd, S. (2006) The MBR Book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment. Elsevier, Oxford.
[39]  Aslam, M., Charfi, A., Lesage, G., Heran, M. and Kim, J. (2017) Membrane Bioreactors for Wastewater Treatment: A Review of Mechanical Cleaning by Scouring Agents to Control Membrane Fouling. Chemical Engineering Journal, 307, 897-913. https://doi.org/10.1016/j.cej.2016.08.144
[40]  Lei, Z., Yang, S., Li, Y.-Y., Wen, W., Wang, X.C. and Chen, R. (2018) Application of Anaerobic Membrane Bioreactors to Municipal Wastewater Treatment at Ambient Temperature: A Review of Achievements, Challenges, and Perspectives. Bioresource Technology, 267, 756-768. https://doi.org/10.1016/j.biortech.2018.07.050
[41]  Carstensen, F., Apel, A. and Wessling, M. (2012) In Situ Product Recovery: Submerged Membranes vs. External Loop Membranes. Journal of Membrane Science, 394-395, 1-36. https://doi.org/10.1016/j.memsci.2011.11.029
[42]  Bérubé, P. (2010) Chap. 9. Membrane Bioreactors: Theory and Applications to Wastewater Reuse. In: Sustainability Science and Engineering, Vol. 2, Elsevier B.V., Amsterdam, 255-292. https://doi.org/10.1016/S1871-2711(09)00209-8
[43]  Wu, J., Chen, F., Huang, X., Geng, W. and Wen, X. (2006) Using Inorganic Coagulants to Control Membrane Fouling in a Submerged Membrane Bioreactor. Desalination, 197, 124-136. https://doi.org/10.1016/j.desal.2005.11.026
[44]  Lee, D.S., Jeon, C.O. and Park, J.M. (2001) Biological Nitrogen Removal with Enhanced Phosphate Uptake in a Sequencing Batch Reactor Using Single Sludge System. Water Research, 35, 3968-3976. https://doi.org/10.1016/S0043-1354(01)00132-4
[45]  He, S.-B., Xue, G. and Kong, H.-N. (2006) Zeolite Powder Addition to Improve the Performance of Submerged Gravitation-Filtration Membrane Bioreactor. Journal of Environmental Sciences, 18, 242-247.
[46]  Rezaei, M. and Mehrnia, M.R. (2014) The Influence of Zeolite (Clinoptilolite) on the Performance of a Hybrid Membrane Bioreactor. Bioresource Technology, 158, 25-31. https://doi.org/10.1016/j.biortech.2014.01.138
[47]  Deng, L., Guo, W., Ngo, H.H., Zhang, J., Liang, S., Xia, S. and Zhang, Z. (2014) A Comparison Study on Membrane Fouling in a Sponge-Submerged Membrane Bioreactor and a Conventional Membrane Bioreactor. Bioresource Technology, 165, 69-74. https://doi.org/10.1016/j.biortech.2014.02.111
[48]  Ng, H.Y., Tan, T.W. and Ong, S.L. (2006) Membrane Fouling of Submerged Membrane Bioreactors: Impact of Mean Cell Residence Time and the Contributing Factors. Environmental Science & Technology, 40, 2706-2713. https://doi.org/10.1021/es0516155
[49]  Deowan, S.A., Galiano, F., Hoinkis, J., Johnson, D., Altinkaya, S.A., Gabriel, B., Hilal, N., Drioli, E. and Figoli, A. (2016) Novel Low-Fouling Membrane Bioreactor (MBR) for Industrial Wastewater Treatment. Journal of Membrane Science, 510, 524-532. https://doi.org/10.1016/j.memsci.2016.03.002
[50]  Zhao, C., Xu, X., Chen, J., Wang, G. and Yang, F. (2014) Highly Effective Antifouling Performance of PVDF/Graphene Oxide Composite Membrane in Membrane Bioreactor (MBR) System. Desalination, 340, 59-66. https://doi.org/10.1016/j.desal.2014.02.022
[51]  Oh, H.-S. and Lee, C.-H. (2018) Origin and Evolution of Quorum Quenching Technology for Biofouling Control in MBRs for Wastewater Treatment. Journal of Membrane Science, 554, 331-345. https://doi.org/10.1016/j.memsci.2018.03.019
[52]  Chang, H.N. (1987) Membrane Bioreactors: Engineering Aspects. Biotechnology Advances, 5, 129-145. https://doi.org/10.1016/0734-9750(87)90007-3
[53]  Alizadeh Fard, M., Aminzadeh, B., Taheri, M., Farhadi, S. and Maghsoodi, M. (2013) MBR Excess Sludge Reduction by Combination of Electrocoagulation and Fenton Oxidation Processes. Separation and Purification Technology, 120, 378-385. https://doi.org/10.1016/j.seppur.2013.10.012
[54]  Keerthi, Vinduja, V. and Balasubramanian, N. (2013) Electrocoagulation-Integrated Hybrid Membrane Processes for the Treatment of Tannery Wastewater. Environmental Science and Pollution Research, 20, 7441-7449. https://doi.org/10.1007/s11356-013-1766-y
[55]  Neoh, C.H., Noor, Z.Z., Mutamim, N.S.A. and Lim, C.K. (2016) Green Technology in Wastewater Treatment Technologies: Integration of Membrane Bioreactor with Various Wastewater Treatment Systems. Chemical Engineering Journal, 283, 582-594. https://doi.org/10.1016/j.cej.2015.07.060
[56]  Ma, J., Dai, R., Chen, M., Khan, S.J. and Wang, Z. (2018) Applications of Membrane Bioreactors for Water Reclamation: Micropollutant Removal, Mechanisms and Perspectives. Bioresource Technology, 269, 532-543. https://doi.org/10.1016/j.biortech.2018.08.121
[57]  Tian, Y., Li, H., Li, L., Su, X., Lu, Y., Zuo, W. and Zhang, J. (2016) In-Situ Integration of Microbial Fuel Cell with Hollow-Fiber Membrane Bioreactor for Wastewater Treatment and Membrane Fouling Mitigation. Biosensors & Bioelectronics, 64, 189-195. https://doi.org/10.1016/j.bios.2014.08.070
[58]  Shin, C. and Bae, J. (2018) Current Status of the Pilot-Scale Anaerobic Membrane Bioreactor Treatments of Domestic Wastewaters: A Critical Review. Bioresource Technology, 247, 1038-1046. https://doi.org/10.1016/j.biortech.2017.09.002
[59]  Besha, A.T., Gebreyohannes, A.Y., Tufa, R.A., Bekele, D.N., Curcio, E. and Giorno, L. (2017) Removal of Emerging Micropollutants by Activated Sludge Process and Membrane Bioreactors and the Effects of Micropollutants on Membrane Fouling: A Review. Journal of Environmental Chemical Engineering, 5, 2395-2414. https://doi.org/10.1016/j.jece.2017.04.027
[60]  Qin, L., Zhang, Y., Xu, Z. and Zhang, G. (2018) Advanced Membrane Bioreactors Systems: New Materials and Hybrid Process Design. Bioresource Technology, 269, 476-488. https://doi.org/10.1016/j.biortech.2018.08.062
[61]  Wu, G., Cui, L. and Xu, Y. (2008) A Novel Submerged Rotating Membrane Bioreactor and Reversible Membrane Fouling Control. Desalination, 228, 255-262. https://doi.org/10.1016/j.desal.2007.10.014
[62]  Zuo, D.-Y., Li, H.-J., Liu, H.-T. and Wu, G.-P. (2010) A Study on Submerged Rotating MBR for Wastewater Treatment and Membrane Cleaning. Korean Journal of Chemical Engineering, 27, 881-885. https://doi.org/10.1007/s11814-010-0123-9
[63]  Jiang, T., Zhang, H., Yang, F., Gao, D. and Du, H. (2013) Relationships between Mechanically Induced Hydrodynamics and Membrane Fouling in a Novel Rotating Membrane Bioreactor. Desalination and Water Treatment, 51, 2850-2861. https://doi.org/10.1080/19443994.2012.750794
[64]  Jiang, T., Zhang, H., Gao, D., Dong, F., Gao, J. and Yang, F. (2012) Fouling Characteristics of a Novel Rotating Tubular Membrane Bioreactor. Chemical Engineering and Processing: Process Intensification, 62, 39-46. https://doi.org/10.1016/j.cep.2012.09.012
[65]  Rector, T.J., Garland, J.L. and Starr, S.O. (2006) Dispersion Characteristics of a Rotating Hollow Fiber Membrane Bioreactor: Effects of Module Packing Density and Rotational Frequency. Journal of Membrane Science, 278, 144-150. https://doi.org/10.1016/j.memsci.2005.10.050
[66]  Liu, L., Gao, B., Liu, J. and Yang, F. (2012) Rotating a Helical Membrane for Turbulence Enhancement and Fouling Reduction. Chemical Engineering Journal, 181-182, 486-493. https://doi.org/10.1016/j.cej.2011.12.007
[67]  Bentzen, T.R., Ratkovich, N., Madsen, S., Jensen, J.C., Bak, S.N. and Rasmussen, M.R. (2012) Analytical and Numerical Modelling of Newtonian and Non-Newtonian Liquid in a Rotational Cross-Flow MBR. Water Science and Technology, 66, 2318-2327. https://doi.org/10.2166/wst.2012.443
[68]  Alnaizy, R., Aidan, A. and Luo, H. (2011) Performance Assessment of a Pilot-Size Vacuum Rotation Membrane Bioreactor Treating Urban Wastewater. Applied Water Science, 1, 103-110. https://doi.org/10.1007/s13201-011-0013-2
[69]  Kola, A., Ye, Y., Ho, A., Le-Clech, P. and Chen, V. (2012) Application of Low Frequency Transverse Vibration on Fouling Limitation in Submerged Hollow Fibre Membranes. Journal of Membrane Science, 409-410, 54-65. https://doi.org/10.1016/j.memsci.2012.03.017
[70]  Li, T., Law, A.W.-K., Cetin, M. and Fane, A.G. (2013) Fouling Control of Submerged Hollow Fibre Membranes by Vibrations. Journal of Membrane Science, 427, 230-239. https://doi.org/10.1016/j.memsci.2012.09.031
[71]  Bilad, M.R., Mezohegyi, G., Declerck, P. and Vankelecom, I.F.J. (2012) Novel Magnetically Induced Membrane Vibration (MMV) for Fouling Control in Membrane Bioreactors. Water Research, 46, 63-72. https://doi.org/10.1016/j.watres.2011.10.026
[72]  Ho, J., Smith, S. and Roh, H.K. (2014) Alternative Energy Efficient Membrane Bioreactor Using Reciprocating Submerged Membrane. Water Science and Technology, 70, 1998-2003. https://doi.org/10.2166/wst.2014.447
[73]  Low, S.C., Cheong, K.T. and Lim, H.L. (2009) A Vibration Membrane Bioreactor. Desalination and Water Treatment, 5, 42-47. https://doi.org/10.5004/dwt.2009.563
[74]  Altaee, A., Al-Rawajfeh, A.E. and Baek, Y.J. (2009) Application of Vibratory System to Improve the Critical Flux in Submerged Hollow Fiber MF Process. Separation Science and Technology, 45, 28-34. https://doi.org/10.1080/01496390903401796
[75]  Maaz, M., Yasin, M., Aslam, M., Kumar, G., Atabani, A.E., Idrees, M., Anjum, F., Jamil, F., Ahmad, R., Khan, A.L., Lesage, G., Heran, M. and Kim, J. (2019) Anaerobic Membrane Bioreactors for Wastewater Treatment: Novel Configurations, Fouling Control and Energy Considerations. Bioresource Technology, 283, 358-372. https://doi.org/10.1016/j.biortech.2019.03.061
[76]  Liu, L., Xu, X., Zhao, C. and Yang, F. (2010) A New Helical Membrane Module for Increasing Permeate Flux. Journal of Membrane Science, 360, 142-148. https://doi.org/10.1016/j.memsci.2010.05.014
[77]  Jie, L., Liu, L., Yang, F., Liu, F. and Liu, Z. (2012) The Configuration and Application of Helical Membrane Modules in MBR. Journal of Membrane Science, 392-393, 112-121. https://doi.org/10.1016/j.memsci.2011.12.011
[78]  Pentair’s Helix Membranes. https://xflow.pentair.com/en/products/compact-helix
[79]  Kimura, K. and Watanabe, Y. (2005) Baffled Membrane Bioreactor (BMBR) for Advanced Wastewater Treatment: Easy Modification of Existing MBRs for Efficient Nutrient Removal. Water Science and Technology, 52, 427-434. https://doi.org/10.2166/wst.2005.0720
[80]  Kimura, K., Nishisako, R., Miyoshi, T., Shimada, R. and Watanabe, Y. (2008) Baffled Membrane Bioreactor (BMBR) for Efficient Nutrient Removal from Municipal Wastewater. Water Research, 42, 625-632. https://doi.org/10.1016/j.watres.2007.08.012
[81]  Yan, X., Xiao, K., Liang, S., Lei, T., Liang, P., Xue, T., Yu, K., Guan, J. and Huang, X. (2015) Hydraulic Optimization of Membrane Bioreactor via Baffle Modification Using Computational Fluid Dynamics. Bioresource Technology, 175, 633-637. https://doi.org/10.1016/j.biortech.2014.10.133
[82]  Shariati, F.P., Mehrnia, M.R., Sarrafzadeh, M.H., Rezaee, S., Grasmick, A. and Heran, M. (2013) Fouling in a Novel Airlift Oxidation Ditch Membrane Bioreactor (AOXMBR) at Different High Organic Loading Rate. Separation and Purification Technology, 105, 69-78. https://doi.org/10.1016/j.seppur.2012.12.008
[83]  Kurita, T., Kimura, K. and Watanabe, Y. (2015) Energy Saving in the Operation of Submerged MBRs by the Insertion of Baffles and the Introduction of Granular Materials. Separation and Purification Technology, 141, 207-213. https://doi.org/10.1016/j.seppur.2014.11.025
[84]  Komesli, O.T. and Gökçay, C.F. (2013) Investigation of Sludge Viscosity and Its Effects on the Performance of a Vacuum Rotation Membrane Bioreactor. Environmental Technology, 35, 645-652. https://doi.org/10.1080/09593330.2013.840655
[85]  Deng, L., Guo, W., Ngo, H.H., Zhang, H., Wang, J., Li, J., Xia, S. and Wu, Y. (2016) Biofouling and Control Approaches in Membrane Bioreactors. Bioresource Technology, 221, 656-665. https://doi.org/10.1016/j.biortech.2016.09.105
[86]  Abuabdou, S.M.A., Ahmad, W., Aun, N.C. and Bashir, M.J.K. (2020) A Review of Anaerobic Membrane Bioreactors (AnMBR) for the Treatment of Highly Contaminated Landfill Leachate and Biogas Production: Effectiveness, Limitations and Future Perspectives. Journal of Cleaner Production, 255, Article ID: 120215. https://doi.org/10.1016/j.jclepro.2020.120215
[87]  Nunes, S.P. (2016) Block Copolymer Membranes for Aqueous Solution Applications. Macromolecules, 49, 2905-2916. https://doi.org/10.1021/acs.macromol.5b02579
[88]  Yeon, K.M., Cheong, W.S., Oh, H.S., Lee, W.N., Hwang, B.K., Lee, C.H., Beyenal, H. and Lewandowski, Z. (2009) Quorum Sensing: A New Biofouling Control Paradigm in a Membrane Bioreactor for Advanced Wastewater Treatment. Environmental Science & Technology, 43, 380-385. https://doi.org/10.1021/es8019275
[89]  Aslam, M., Ahmad, R. and Kim, J. (2018) Recent Developments in Biofouling Control in Membrane Bioreactors for Domestic Wastewater Treatment. Separation and Purification Technology, 206, 297-315. https://doi.org/10.1016/j.seppur.2018.06.004
[90]  Nguyen, L.N., Commault, A.S., Kahlke, T., Ralph, P.J., Semblante, G.U., Johir, M.A.H. and Nghiem, L.D. (2020) Genome Sequencing as a New Window into the Microbial Community of Membrane Bioreactors—A Critical Review. Science of the Total Environment, 704, Article ID: 135279. https://doi.org/10.1016/j.scitotenv.2019.135279
[91]  Huang, J., Shi, Y., Zeng, G., Gu, Y., Chen, G., Shi, L., Hu, Y., Tang, B. and Zhou, J. (2016) Acyl-Homoserine Lactone-Based Quorum Sensing and Quorum Quenching Hold Promise to Determine the Performance of Biological Wastewater Treatments: An Overview. Chemosphere, 157, 137-151. https://doi.org/10.1016/j.chemosphere.2016.05.032
[92]  Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B.-Q., Hong, H., Chen, J. and Gao, W. (2014) A Critical Review of Extracellular Polymeric Substances (EPSs) in Membrane Bioreactors: Characteristics, Roles in Membrane Fouling and Control Strategies. Journal of Membrane Science, 460, 110-125. https://doi.org/10.1016/j.memsci.2014.02.034
[93]  Lee, K., Yu, H., Zhang, X. and Choo, K.-H. (2018) Quorum Sensing and Quenching in Membrane Bioreactors: Opportunities and Challenges for Biofouling Control. Bioresource Technology, 270, 656-668. https://doi.org/10.1016/j.biortech.2018.09.019
[94]  Arefi-Oskoui, S., Khataee, A., Safarpour, M., Orooji, Y. and Vatanpour, V. (2019) A Review on the Applications of Ultrasonic Technology in Membrane Bioreactors. Ultrasonics Sonochemistry, 58, Article ID: 104633. https://doi.org/10.1016/j.ultsonch.2019.104633
[95]  Ghernaout, D., El-Wakil, A., Alghamdi, A., Elboughdiri, N. and Mahjoubi, A. (2018) Membrane Post-Synthesis Modifications and How It Came about. International Journal of Advances in Applied Sciences, 5, 60-64. https://doi.org/10.21833/ijaas.2018.02.010
[96]  Ghernaout, D. and El-Wakil, A. (2017) Requiring Reverse Osmosis Membranes Modifications—An Overview. American Journal of Chemical Engineering, 5, 81-88. https://doi.org/10.11648/j.ajche.20170504.15
[97]  Lee, X.J., Show, P.L., Katsuda, T., Chen, W.-H. and Chang, J.-S. (2018) Surface Grafting Techniques on the Improvement of Membrane Bioreactor: State-of-the-Art Advances. Bioresource Technology, 269, 489-502. https://doi.org/10.1016/j.biortech.2018.08.090
[98]  Iorhemen, O.T., Hamza, R.A. and Tay, J.H. (2017) Membrane Fouling Control in Membrane Bioreactors (MBRs) Using Granular Materials. Bioresource Technology, 240, 9-24. https://doi.org/10.1016/j.biortech.2017.03.005
[99]  Yan, T., Ye, Y., Ma, H., Zhang, Y., Guo, W., Du, B., Wei, Q., Wei, D. and Ngo, H.H. (2018) A Critical Review on Membrane Hybrid System for Nutrient Recovery from Wastewater. Chemical Engineering Journal, 348, 143-156. https://doi.org/10.1016/j.cej.2018.04.166
[100]  Stazi, V. and Tomei, M.C. (2018) Enhancing Anaerobic Treatment of Domestic Wastewater: State of the Art, Innovative Technologies and Future Perspectives. Science of the Total Environment, 635, 78-91. https://doi.org/10.1016/j.scitotenv.2018.04.071
[101]  Bakonyi, P., Nemestóthy, N., Simon, V. and Bélafi-Bakó, K. (2014) Fermentative Hydrogen Production in Anaerobic Membrane Bioreactors: A Review. Bioresource Technology, 156, 357-363. https://doi.org/10.1016/j.biortech.2014.01.079
[102]  Hu, Y., Wang, X.C., Ngo, H.H., Sun, Q. and Yang, Y. (2018) Anaerobic Dynamic Membrane Bioreactor (AnDMBR) for Wastewater Treatment: A Review. Bioresource Technology, 247, 1107-1118. https://doi.org/10.1016/j.biortech.2017.09.101
[103]  Lee, D.-J. and Hsieh, M.-H. (2019) Forward Osmosis Membrane Processes for Wastewater Bioremediation: Research Needs. Bioresource Technology, 290, Article ID: 121795. https://doi.org/10.1016/j.biortech.2019.121795
[104]  Cheng, D., Ngo, H.H., Guo, W., Liu, Y., Chang, S.W., Nguyen, D.D., Nghiem, L.D., Zhou, J. and Ni, B. (2018) Anaerobic Membrane Bioreactors for Antibiotic Wastewater Treatment: Performance and Membrane Fouling Issues. Bioresource Technology, 267, 714-724. https://doi.org/10.1016/j.biortech.2018.07.133
[105]  Zhen, G., Pan, Y., Lu, X., Li, Y.-Y., Zhang, Z., Niu, C., Kumar, G., Kobayashi, T., Zhao, Y. and Xu, K. (2019) Anaerobic Membrane Bioreactor towards Biowaste Biorefinery and Chemical Energy Harvest: Recent Progress, Membrane Fouling and Future Perspectives. Renewable & Sustainable Energy Reviews, 115, Article ID: 109392. https://doi.org/10.1016/j.rser.2019.109392
[106]  Duncan, J., Bokhary, A., Fatehi, P., Kong, F., Lin, H. and Liao, B. (2017) Thermophilic Membrane Bioreactors: A Review. Bioresource Technology, 243, 1180-1193. https://doi.org/10.1016/j.biortech.2017.07.059
[107]  Mahboubi, A., Ylitervo, P., Doye, W., De Wever, H. and Taherzadeh, M.J. (2016) Reverse Membrane Bioreactor: Introduction to a New Technology for Biofuel Production. Biotechnology Advances, 34, 954-975. https://doi.org/10.1016/j.biotechadv.2016.05.009
[108]  Viet, N.D., Cho, J., Yoon, Y. and Jang, A. (2019) Enhancing the Removal Efficiency of Osmotic Membrane Bioreactors: A Comprehensive Review of Influencing Parameters and Hybrid Configurations. Chemosphere, 236, Article ID: 124363. https://doi.org/10.1016/j.chemosphere.2019.124363
[109]  Bagheri, M. and Mirbagheri, S.A. (2018) Critical Review of Fouling Mitigation Strategies in Membrane Bioreactors Treating Water and Wastewater. Bioresource Technology, 258, 318-334. https://doi.org/10.1016/j.biortech.2018.03.026

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413