全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

A Brief Review in Effect Factors on Peatland Ecosystem

DOI: 10.4236/oalib.1106820, PP. 1-16

Subject Areas: Environmental Sciences

Keywords: Peatland, Carbon Dioxide, Methane Flux, Evapotranspiration, Climate Change

Full-Text   Cite this paper   Add to My Lib

Abstract

Peatland ecosystem plays an important role in the global climate change because they act as a pool or sink of the gasses. There are several factors which influence the environmental consequences of peatland especially in relation to climate change. The main influences are: 1) carbon dioxide, 2) methane flux, 3) nitrous oxide (N2O) and 4) others environmental factors. These atmospheric gases concentrates constitute roughly 73 percent of the overall positive energy flux variation. Carbon dioxide is the greenhouse gas considered most consequential in Anthropocene climate change. Methane is a potent greenhouse gas with a global warming potential 34 times greater than carbon dioxide in natural wetlands and the majority of these emissions are from peatlands. Nitrous oxide is one of the main pollutants in the ecosystem of peatlands and can cause eutrophication. This paper is a brief review on environmental factors influences to climate change in peatland ecosystems. It highlights the need for minimizing the negative effects of climate change on wetland ecosystem through proper management of peatlands.

Cite this paper

Alfadhel, I. (2020). A Brief Review in Effect Factors on Peatland Ecosystem. Open Access Library Journal, 7, e6820. doi: http://dx.doi.org/10.4236/oalib.1106820.

References

[1]  Batzer, D.P. and Baldwin, A.H. (2012) Wetland Habitats of North America. University of California Press, Berkeley, 119-134. https://doi.org/10.1525/9780520951419
[2]  Mitsch, G. (2016) Wetlands (5th Edition). Wiley, Hoboken.
[3]  Clymo, R.S. (1984) The Limits to Peat Bog Growth. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 303, 605-654.
[4]  Rankin, T. (2016) An Analysis of Carbon Dioxide and Methane Exchange at a Post-Extraction, Unrestored Peatland in Eastern Québec.
[5]  Jaenicke, J., Rieley, J.O., Mott, C., Kimman, P. and Siegert, F. (2008) Determination of the Amount of Carbon Stored in Indonesian Peatlands. Geoderma, 147, 151-158. https://doi.org/10.1016/j.geoderma.2008.08.008
[6]  Lähteenoja, O., Ruokolainen, K., Schulman, L. and Alvarez, J. (2009) Amazonian Floodplains Harbour Minerotrophic and Ombrotrophic Peatlands. Catena, 79, 140-145. https://doi.org/10.1016/j.catena.2009.06.006
[7]  Tiner, R. (2017) Wetland Indicators. CRC Press, Boca Raton. https://doi.org/10.1201/9781315374710
[8]  Rydin, H. and Jeglum, J.K. (2013) The Biology of Peatlands. 2nd Edition, Oxford University Press, Oxford. https://doi.org/10.1093/acprof:osobl/9780199602995.001.0001
[9]  Kennedy, G. and Mayer, T. (2002) Natural and Constructed Wetlands in Canada: An Overview. Water Quality Research Journal of Canada, 37, 295-325. https://doi.org/10.2166/wqrj.2002.020
[10]  Andersen, R., Rochefort, L. and Poulin, M. (2010) Peat, Water and Plant Tissue Chemistry Monitoring: A Seven-Year Case-Study in a Restored Peatland. Wetlands, 30, 159-170. https://doi.org/10.1007/s13157-009-0015-0
[11]  Lafleur, P.M. (2009) Connecting Atmosphere and Wetland: Trace Gas Exchange. Geography Compass, 3, 560-585. https://doi.org/10.1111/j.1749-8198.2008.00212.x
[12]  Roulet, N.T., Lafleur, P.M., Richard, P.J.H., Moore, T.R., Humphreys, E.R. and Bubier, J. (2007) Contemporary Carbon Balance and Late Holocene Carbon Accumulation in a Northern Peatland. Global Change Biology, 13, 397-411. https://doi.org/10.1111/j.1365-2486.2006.01292.x
[13]  Rieley, J., Jauhiainen, J. and Page, S. (2008) Peatlands and Climate Change.
[14]  Waddington, J.M., Morris, P.J., Kettridge, N., Granath, G., Thompson, D.K. and Moore, P.A. (2015) Hydrological Feedbacks in Northern Peatlands. Ecohydrology, 8, 113-127. https://doi.org/10.1002/eco.1493
[15]  Kayranli, B., Scholz, M., Mustafa, A. and Hedmark, Å. (2010) Carbon Storage and Fluxes within Freshwater Wetlands: A Critical Review. Wetlands, 30, 111-124. https://doi.org/10.1007/s13157-009-0003-4
[16]  Litton, C.M., Raich, J.W. and Ryan, M.G. (2007) Carbon Allocation in Forest Ecosystems. Global Change Biology, 13, 2089-2109. https://doi.org/10.1111/j.1365-2486.2007.01420.x
[17]  Golovchenko, A.V., Tikhonova, E.I. and Zviagintsev, D.G. (2007) Abundance, Biomass, Structure, and Activity of the Microbial Complexes of Minerotrophic and Ombrotrophic Peatlands. Mikrobiologiia, 76, 711-719. https://doi.org/10.1134/S0026261707050177
[18]  Winsborough, C. and Basiliko, N. (2010) Fungal and Bacterial Activity in Northern Peatlands. Geomicrobiology Journal, 27, 315-320. https://doi.org/10.1080/01490450903424432
[19]  Wieder, R.K., Vitt, D.H. and Benscoter, B.W. (2006) Peatlands and the Boreal Forest. In: Boreal Peatland Ecosystems, Springer, Berlin, 1-8. https://doi.org/10.1007/978-3-540-31913-9_1
[20]  IPCC (2013) Climate Change 2013—The Physical Science Basis: Summary for Policymakers, Technical Summary and Frequently Asked Questions.
[21]  Allen, M.R., Frame, D.J., Huntingford, C., Jones, C.D., Lowe, J.A., Meinshausen, et al. (2009) Warming Caused by Cumulative Carbon Emissions towards the Trillionth Tonne. Nature, 458, 1163-1166. https://doi.org/10.1038/nature08019
[22]  Gillett, N.P., Arora, V.K., Matthews, D. and Allen, M.R. (2013) Constraining the Ratio of Global Warming to Cumulative CO2 Emissions Using CMIP5 Simulations. Journal of Climate, 26, 6844-6858. https://doi.org/10.1175/JCLI-D-12-00476.1
[23]  Grimm, N.B., Chapin, F.S., Bierwagen, B., Gonzalez, P., Groffman, P.M., Luo, Y., Melton, F., et al. (2013) The Impacts of Climate Change on Ecosystem Structure and Function. Frontiers in Ecology and the Environment, 11, 474-482. https://doi.org/10.1890/120282
[24]  Xia, J., Liang, S., Chen, J., Yuan, W., Liu, S., Li, L., et al. (2014) Satellite-Based Analysis of Evapotranspiration and Water Balance in the Grassland Ecosystems of Dryland East Asia. PLoS ONE, 9, e97295. https://doi.org/10.1371/journal.pone.0097295
[25]  Bu, Z., Hans, J., Li, H., Zhao, G., Zheng, X., Ma, J. and Zeng, J. (2011) The Response of Peatlands to Climate Warming: A Review. Acta Ecologica Sinica, 31, 157-162. https://doi.org/10.1016/j.chnaes.2011.03.006
[26]  Bridgham, S.D., Cadillo-Quiroz, H., Keller, J.K. and Zhuang, Q. (2013) Methane Emissions from Wetlands: Biogeochemical, Microbial, and Modeling Perspectives from Local to Global Scales. Global Change Biology, 19, 1325-1346. https://doi.org/10.1111/gcb.12131
[27]  Blais, A.-M., Lorrain, S. and Tremblay, A. (2005) Greenhouse Gas Fluxes (CO2, CH4 and N2O) in Forests and Wetlands of Boreal, Temperate and Tropical Regions. In: Greenhouse Gas Emissions—Fluxes and Processes, Springer, Berlin, 87-127. https://doi.org/10.1007/978-3-540-26643-3_5
[28]  Alfadhel, I., Ge, J. and Issaka, S. (2020) Net Ecosystem CO2 Flux and Effect Factors in Peatland Ecosystem of Central China. Geosciences and Environment Protection, 8, 95-106. https://doi.org/10.4236/gep.2020.88008
[29]  Bridgham, S.D., Johnston, C.A., Pastor, J. and Updegraff, K. (1995) Potential Feedbacks of Northern Wetlands on Climate Change—An Outline of an Approach to Predict Climate-Change Impact. Bioscience, 45, 262-274. https://doi.org/10.2307/1312419
[30]  Chimner, R.A. and Cooper, D.J. (2003) Influence of Water Table Levels on CO2 Emissions in a Colorado Subalpine Fen: An in Situ Microcosm Study. Soil Biology and Biochemistry, 35, 345-351. https://doi.org/10.1016/S0038-0717(02)00284-5
[31]  Freeman, C., Lock, M. and Reynolds, B. (1993) Fluxes of CO2, CH4, and N2O from a Welsh Peatland Following Simulation of Water Table Draw-Down: Potential Feedback for Climate Change. Bigeochemistry, 19, 51-60. https://doi.org/10.1007/BF00000574
[32]  Funk, D.W., Pullman, E.R., Peterson, K.M., Crill, P.M. and Billings, W.D. (1994) Influence of Water Table on Carbon Dioxide, Carbon Monoxide, and Methane Fluxes from Taiga Bog Microcosms. Global Biogeochemical Cycles, 8, 271-278. https://doi.org/10.1029/94GB01229
[33]  Tremblay, A., Therrien, J., Hamlin, B., Wishmann, E., et al. (2005) GHG Emissions from Boreal Reservoirs and Natural Aquatic Ecosystems. In: Greenhouse Gas Emissions—Fluxes and Processes, Springer, Berlin, 209-232. https://doi.org/10.1007/978-3-540-26643-3_9
[34]  Keeling, C.D., Bacastow, R.B. and Bainbridge, A.E. (1976) Atmospheric Carbon Dioxide Variations at Mauna Loa Observatory, Hawaii. Tellus, 28, 538-551. https://doi.org/10.3402/tellusa.v28i6.11322
[35]  Draper, F.C., Roucoux, K.H., Lawson, I.T., Mitchard, E.T.A., Honorio Coronado, E.N., Lähteenoja, et al. (2014) The Distribution and Amount of Carbon in the Largest Peatland Complex in Amazonia. Environmental Research Letters, 9, Article ID: 124017. https://doi.org/10.1088/1748-9326/9/12/124017
[36]  Lloyd, C.R. (2006) Annual Carbon Balance of a Managed Wetland Meadow in the Somerset Levels, UK. Agricultural and Forest Meteorology, 138, 168-179. https://doi.org/10.1016/j.agrformet.2006.04.005
[37]  Syed, K.H., Flanagan, L.B., Carlson, P.J., Glenn, A.J. and Van Gaalen, K.E. (2006) Environmental Control of Net Ecosystem CO2 Exchange in a Treed, Moderately Rich Fen in Northern Alberta. Agricultural and Forest Meteorology, 140, 97-114. https://doi.org/10.1016/j.agrformet.2006.03.022
[38]  Mooney, H.A. (1972) Carbon Dioxide Exchange of Plants in Natural Environments. The Botanical Review, 38, 455-469. https://doi.org/10.1007/BF02860011
[39]  Glenn, A.J., Flanagan, L.B., Syed, K.H. and Carlson, P.J. (2006) Comparison of Net Ecosystem CO2 Exchange in Two Peatlands in Western Canada with Contrasting Dominant Vegetation, Sphagnum and Carex. Agricultural and Forest Meteorology, 140, 115-135. https://doi.org/10.1016/j.agrformet.2006.03.020
[40]  Lafleur, P.M., Roulet, N.T. and Admiral, S.W. (2001) Annual Cycle of CO2 Exchange at a Bog Peatland. Journal of Geophysical Research: Atmospheres, 106, 3071-3081. https://doi.org/10.1029/2000JD900588
[41]  Aurela, M., Riutta, T., Laurila, T., Tuovinen, J.P., Vesala, T., Tuittila, E.S., et al. (2007) CO2 Exchange of a Sedge fen in Southern Finland—The Impact of a Drought Period. Tellus. Series B: Chemical and Physical Meteorology, 59, 826-837. https://doi.org/10.1111/j.1600-0889.2007.00309.x
[42]  Griffis, T.J., Rouse, W.R. and Waddington, J.M. (2000) Interannual Variability of Net Ecosystem CO2 Exchange at a Subarctic Fen. Global Biogeochemical Cycles, 14, 1109-1121. https://doi.org/10.1029/1999GB001243
[43]  McNeil, P. and Waddington, J.M. (2003) Moisture Controls on Sphagnum Growth and CO2 Exchange on a Cutover Bog. Journal of Applied Ecology, 40, 354-367. https://doi.org/10.1046/j.1365-2664.2003.00790.x
[44]  Moore, T.R. and Knowles, R. (1989) The Influence of Water Table Levels on Methane and Carbon Dioxide Emissions from Peatland Soils. Canadian Journal of Soil Science, 69, 33-38. https://doi.org/10.4141/cjss89-004
[45]  Lafleur, P.M., Roulet, N.T., Bubier, J.L., Frolking, S. and Moore, T.R. (2003) Interannual Variability in the Peatland-Atmosphere Carbon Dioxide Exchange at an Ombrotrophic Bog. Global Biogeochemical Cycles, 17, 5-14. https://doi.org/10.1029/2002GB001983
[46]  Wang, M., Wu, J., Lafleur, P.M., Luan, J., Chen, H. and Zhu, X. (2018) Can Abandoned Peatland Pasture Sequestrate More Carbon Dioxide from the Atmosphere than an Adjacent Pristine Bog in Newfoundland, Canada? Agricultural and Forest Meteorology, 248, 91-108. https://doi.org/10.1016/j.agrformet.2017.09.010
[47]  Aurela, M., Laurila, T. and Tuovinen, J.P. (2004) The Timing of Snow Melt Controls the Annual CO2 Balance in a Subarctic Fen. Geophysical Research Letters, 31, 16. https://doi.org/10.1029/2004GL020315
[48]  Hommeltenberg, J., Mauder, M., Drösler, M., Heidbach, K., Werle, P. and Schmid, H.P. (2014) Ecosystem Scale Methane Fluxes in a Natural Temperate Bog-Pine Forest in Southern Germany. Agricultural and Forest Meteorology, 198, 273-284. https://doi.org/10.1016/j.agrformet.2014.08.017
[49]  McVeigh, P., Sottocornola, M., Foley, N., Leahy, P. and Kiely, G. (2014) Meteorological and Functional Response Partitioning to Explain Interannual Variability of CO2 Exchange at an Irish Atlantic Blanket Bog. Agricultural and Forest Meteorology, 194, 8-19. https://doi.org/10.1016/j.agrformet.2014.01.017
[50]  Lund, M., Bjerke, J.W., Drake, B.G., Engelsen, O., Hansen, G.H., Parmentier, et al. (2015) Low Impact of Dry Conditions on the CO2 Exchange of a Northern-Norwegian Blanket Bog. Environmental Research Letters, 10, Article ID: 025004.
[51]  Lund, M., Lindroth, A., Christensen, T.R. and Str?m, L. (2009) Annual CO2 Balance of a Temperate Bog. Medd fran Lunds Univ Geogr Institutioner, Avh.
[52]  Olson, D.M., Griffis, T.J., Noormets, A., Kolka, R. and Chen, J. (2013) Interannual, Seasonal, and Retrospective Analysis of the Methane and Carbon Dioxide Budgets of a Temperate Peatland. Journal of Geophysical Research: Biogeosciences, 118, 226-238. https://doi.org/10.1002/jgrg.20031
[53]  Strilesky, S.L. and Humphreys, E.R. (2012) A Comparison of the Net Ecosystem Exchange of Carbon Dioxide and Evapotranspiration for Treed and Open Portions of a Temperate Peatland. Agricultural and Forest Meteorology, 153, 45-53. https://doi.org/10.1016/j.agrformet.2011.06.006
[54]  Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., et al. (2013) Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 465-570.
[55]  Alfadhel, I., Ge, J., Sinan, Y. and Liu, Y. (2019) Methane Flux and Its Environmental Impact Factors in Dajiuhu Wetland of Shennongjia. Wuhan University Journal of Natural Sciences, 24, 455-460. https://doi.org/10.1007/s11859-019-1421-7
[56]  Zhang, M., Xiao, Q., Zhang, Z., Gao, Y., Zhao, J., Pu, Y., et al. (2019) Methane Flux Dynamics in a Submerged Aquatic Vegetation Zone in a Subtropical Lake. Science of the Total Environment, 672, 400-409. https://doi.org/10.1016/j.scitotenv.2019.03.466
[57]  Bartlett, K.B. and Harriss, R.C. (1993) Review and Assessment of Methane Emissions from Wetlands. Chemopshere, 26, 261-320. https://doi.org/10.1016/0045-6535(93)90427-7
[58]  Christensen, T.R., Panikov, N., Mastepanov, M., Joabsson, A., Stewart, A., ?quist, et al. (2003) Biotic Controls on CO2 and CH4 Exchange in Wetlands—A Closed Environment Study. Biogeochemistry, 64, 337-354. https://doi.org/10.1023/A:1024913730848
[59]  Schlesinger, W.H. and Bernhardt, E.S. (2013) Biogeochemistry: An Analysis of Global Change. Third Edition.
[60]  Whalen, S.C. (2005) Natural Wetlands and the Atmosphere. Environmental Engineering Science, 22, 73-94. https://doi.org/10.1089/ees.2005.22.73
[61]  Lai, D.Y.F. (2009) Methane Dynamics in Northern Peatlands: A Review. Pedosphere, 19, 409-421. https://doi.org/10.1016/S1002-0160(09)00003-4
[62]  Shurpali, N.J., Verma, S.B., Clement, R.J. and Billesbach, D.P. (1993) Seasonal Distribution of Methane Flux in a Minnesota Peatland Measured by Eddy Correlation. Journal of Geophysical Research, 98, 20649-20655. https://doi.org/10.1029/93JD02181
[63]  Le Mer, J. and Roger, P. (2010) Production, Oxidation, Emission and Consumption of Methane by Soils: A Review. European Journal of Soil Biology, 37, 25-50. https://doi.org/10.1016/S1164-5563(01)01067-6
[64]  Walter, B.P. and Heimann, M. (2000) A Process-Based, Climate-Sensitive Model to Derive Methane Emissions from Natural Wetlands: Application to Five Wetland Sites, Sensitivity to Model Parameters, and Climate. Global Biogeochemical Cycles, 14, 745-765. https://doi.org/10.1029/1999GB001204
[65]  Abdalla, M., Hastings, A., Truu, J., Espenberg, M., Mander, ü. and Smith, P. (2016) Emissions of Methane from Northern Peatlands: A Review of Management Impacts and Implications for Future Management Options. Ecology Evolution, 6, 7080-7102. https://doi.org/10.1002/ece3.2469
[66]  Shindell, D.T., Faluvegi, G., Koch, D.M., Schmidt, G.A., et al. (2012) Improved Attribution of Climate Forcing to Emissions. Yale Journal of Biology and Medicine, 85, 167-185.
[67]  McNamara, N.P., Plant, T., Oakley, S., Ward, S., Wood, C. and Ostle, N. (2008) Gully Hotspot Contribution to Landscape Methane (CH4) and Carbon Dioxide (CO2) Fluxes in a Northern Peatland. Science of the Total Environment, 404, 354-360. https://doi.org/10.1016/j.scitotenv.2008.03.015
[68]  Hanson, P.J., Gill, A.L., Xu, X., Phillips, J.R., Weston, D.J., Kolka, et al. (2016) Intermediate-Scale Community-Level Flux of CO2 and CH4 in a Minnesota Peatland: Putting the SPRUCE Project in a Global Context. Biogeochemistry, 129, 255-272. https://doi.org/10.1007/s10533-016-0230-8
[69]  Dinsmore, K.J., Skiba, U.M., Billett, M.F., Rees, R.M. and Drewer, J. (2009) Spatial and Temporal Variability in CH4 and N2O Fluxes from a Scottish Ombrotrophic Peatland: Implications for Modelling and Up-Scaling. Soil Biology and Biochemistry, 41, 1315-1323. https://doi.org/10.1016/j.soilbio.2009.03.022
[70]  Clymo, R.S. (1995) Methane and Carbon Dioxide Production in, Transport through, and Efflux from a Peatland. Philosophical Transactions of the Royal Society A, 351, 249-259. https://doi.org/10.1098/rsta.1995.0032
[71]  Laine, A., Wilson, D., Kiely, G. and Byrne, K.A. (2007) Methane Flux Dynamics in an Irish Lowland Blanket Bog. Plant and Soil, 299, 181-193. https://doi.org/10.1007/s11104-007-9374-6
[72]  Koehler, A.K., Sottocornola, M. and Kiely, G. (2011) How Strong Is the Current Carbon Sequestration of an Atlantic Blanket Bog? Global Change Biology, 17, 309-319. https://doi.org/10.1111/j.1365-2486.2010.02180.x
[73]  Ballantyne, D.M., Hribljan, J.A., Pypker, T.G. and Chimner, R.A. (2014) Long-Term Water Table Manipulations Alter Peatland Gaseous Carbon Fluxes in Northern Michigan. Wetlands Ecology and Management, 22, 35-47. https://doi.org/10.1007/s11273-013-9320-8
[74]  Moore, T.R., De Young, A., Bubier, J.L., Humphreys, E.R., Lafleur, P.M. and Roulet, N.T. (2011) A Multi-Year Record of Methane Flux at the Mer Bleue Bog, Southern Canada. Ecosystems, 14, 646-657. https://doi.org/10.1007/s10021-011-9435-9
[75]  Lai, D.Y.F., Moore, T.R. and Roulet, N.T. (2014) Spatial and Temporal Variations of Methane Flux Measured by Autochambers in a Temperate Ombrotrophic Peatland. Journal of Geophysical Research: Biogeosciences, 119, 864-880. https://doi.org/10.1002/2013JG002410
[76]  Blodau, C., Roulet, N.T., Heitmann, T., Stewart, H., Beer, J., Lafleur, P. and Moore, T.R. (2007) Belowground Carbon Turnover in a Temperate Ombrotrophic Bog. Global Biogeochemical Cycles, 21, GB1021. https://doi.org/10.1029/2005GB002659
[77]  Moore, T.R. and Knowles, R. (1990) Methane Emissions from Fen, Bog and Swamp Peatlands in Quebec. Biogeochemistry, 11, 45-61. https://doi.org/10.1007/BF00000851
[78]  Parasuraman, K., Elshorbagy, A. and Carey, S.K. (2007) Modelling the Dynamics of the Evapotranspiration Process Using Genetic Programming. Hydrological Sciences Journal, 52, 563-578. https://doi.org/10.1623/hysj.52.3.563
[79]  Drexler, J.Z., Anderson, F.E. and Snyder, R.L. (2008) Evapotranspiration Rates and Crop Coefficients for a Restored Marsh in the Sacramento-San Joaquin Delta, California, USA. Hydrological Processes, 22, 725-735. https://doi.org/10.1002/hyp.6650
[80]  Sun, L. and Song, C. (2008) Evapotranspiration from a Freshwater Marsh in the Sanjiang Plain, Northeast China. Journal of Hydrology, 352, 202-210. https://doi.org/10.1016/j.jhydrol.2008.01.010
[81]  Wu, C.L. and Shukla, S. (2014) Eddy Covariance-Based Evapotranspiration for a Subtropical Wetland. Hydrological Processes, 28, 5879-5896. https://doi.org/10.1002/hyp.10075
[82]  Hollinger, D.Y., Kelliher, F.M., Byers, J.N., Hunt, J.E., McSeveny, T.M. and Weir, P.L. (1994) Carbon Dioxide Exchange between an Undisturbed Old-Growth Temperate Forest and the Atmosphere. Ecology, 75, 134-150. https://doi.org/10.2307/1939390
[83]  Goulden, M.L., Daube, B.C., Fan, S., Sutton, D.J., Bazzaz, A., Munger, J.W. and Wofsy, S.C. (1997) Physiological Responses of a Black Spruce Forest to Weather. Agricultural and Forest Meteorology, 102, 987-996. https://doi.org/10.1029/97JD01111
[84]  Souch, C., Grimmond, C.S.B. and Wolfe, C.P. (1998) Evapotranspiration Rates from Wetlands with Different Disturbance Histories: Indiana Dunes National Lakeshore. Wetlands, 18, 216-229. https://doi.org/10.1007/BF03161657
[85]  Acreman, M.C., Harding, R.J., Lloyd, C.R. and McNeil, D.D. (2003) Evaporation Characteristics of Wetlands: Experience from a Wet Grassland and a Reedbed Using Eddy Correlation Measurements. Hydrology and Earth System Sciences, 7, 11-21. https://doi.org/10.5194/hess-7-11-2003
[86]  Stamp, I., Baird, A.J. and Heppell, C.M. (2013) The Importance of Ebullition as a Mechanism of Methane (CH4) Loss to the Atmosphere in a Northern Peatland. Geophysical Research Letters, 40, 2087-2090. https://doi.org/10.1002/grl.50501
[87]  Shimoyama, K. (2003) Seasonal and Interannual Variation in Water Vapor and Heat Fluxes in a West Siberian Continental Bog. Journal of Geophysical Research, 108, 1-13. https://doi.org/10.1029/2003JD003485
[88]  Lafleur, P.M., Hember, R.A., Admiral, S.W. and Roulet, N.T. (2005) Annual and Seasonal Variability in Evapotranspiration and Water Table at a Shrub-Covered Bog in Southern Ontario, Canada. Hydrological Processes, 19, 3533-3550. https://doi.org/10.1002/hyp.5842
[89]  Iwata, H., Harazono, Y., Ueyama, M., Sakabe, A., Nagano, H., Kosugi, et al. (2015) Methane Exchange in a Poorly-Drained Black Spruce Forest over Permafrost Observed Using the Eddy Covariance Technique. Agricultural and Forest Meteorology, 214-215, 157-168. https://doi.org/10.1016/j.agrformet.2015.08.252
[90]  Yu, X., Song, C., Sun, L., Wang, X., Shi, F., Cui, Q. and Tan, W. (2017) Growing Season Methane Emissions from a Permafrost Peatland of Northeast China: Observations Using Open-Path Eddy Covariance Method. Atmospheric Environment, 153, 135-149. https://doi.org/10.1016/j.atmosenv.2017.01.026
[91]  Li, T., Li, H., Zhang, Q., Ma, Z., Yu, L., Lu, Y., et al. (2019) Prediction of CH4 Emissions from Potential Natural Wetlands on the Tibetan Plateau during the 21st Century. Science of the Total Environment, 657, 498-508. https://doi.org/10.1016/j.scitotenv.2018.11.275
[92]  Cao, S., Cao, G., Han, G., Wu, F. and Lan, Y. (2020) Comparison of Evapotranspiration between Two Alpine Type Wetland Ecosystems in Qinghai Lake Basin of Qinghai-Tibet Plateau. Ecohydrology & Hydrobiology, 20, 215-229. https://doi.org/10.1016/j.ecohyd.2020.01.001
[93]  Groffman, P.M., Hardy, J.P., Nolan, S., Driscoll, C.T. and Fahey, T.J. (1998) Snow Depth, Soil Frost and Nutrient Loss in a Northern Hardwood Forest. Hydrological Processes, 13, 2275-2286.
[94]  Voigt, C., Marushchak, M.E., Lamprecht, R.E., Jackowicz-Korczyński, M., Lindgren, A., Mastepanov, et al. (2017) Increased Nitrous Oxide Emissions from Arctic Peatlands after Permafrost Thaw. Proceedings of the National Academy of Sciences of the United States of America, 114, 6238-6243. https://doi.org/10.1073/pnas.1702902114
[95]  Saunders, D.L. and Kalff, J. (2001) Denitrification Rates in the Sediments of Lake Memphremagog, Canada-USA. Water Research, 35, 1897-1904. https://doi.org/10.1016/S0043-1354(00)00479-6
[96]  Carvalho, M.T. de M., Madari, B.E., Bastiaans, L., van Oort, P.A.J., Leal, W.G. de O., de Souza, D.M., et al. (2016) Nitrogen Availability, Water-Filled Pore Space, and N2O-N Fluxes after Biochar Application and Nitrogen Fertilization. Pesquisa Agropecuária Brasileira, 51, 1203-1212. https://doi.org/10.1590/s0100-204x2016000900020
[97]  Fuchs, V.J., Mihelcic, J.R. and Gierke, J.S. (2011) Life Cycle Assessment of Vertical and Horizontal Flow Constructed Wetlands for Wastewater Treatment Considering Nitrogen and Carbon Greenhouse Gas Emissions. Water Research, 45, 2073-2081. https://doi.org/10.1016/j.watres.2010.12.021
[98]  Martikainen, P.J., Nyk?nen, H., Crill, P. and Silvola, J. (1993) Effect of a Lowered Water Table on Nitrous Oxide Fluxes from Northern Peatlands. Nature, 366, 51-53. https://doi.org/10.1038/366051a0
[99]  Arai, H., Hadi, A., Darung, U., Limin, S.H., Takahashi, H., Hatano, R. and Inubushi, K. (2014) Land Use Change Affects Microbial Biomass and Fluxes of Carbon Dioxide and Nitrous Oxide in Tropical Peatlands. Soil Science and Plant Nutrition, 60, 423-434. https://doi.org/10.1080/00380768.2014.903576
[100]  Khirul, M.A., Kim, B.G., Cho, D., Yoo, G. and Kwon, S.H. (2020) Effect of Oyster Shell Powder on Nitrogen Releases from Contaminated Marine Sediment. Environmental Engineering Research, 25, 230-237. https://doi.org/10.4491/eer.2018.395
[101]  Marushchak, M.E., Pitk?m?ki, A., Koponen, H., Biasi, C., Sepp?l?, M. and Martikainen, P.J. (2011) Hot Spots for Nitrous Oxide Emissions Found in Different Types of Permafrost Peatlands. Global Change Biology, 17, 2601-2614. https://doi.org/10.1111/j.1365-2486.2011.02442.x
[102]  Hadi, A., Inubushi, K., Purnomo, E., Razie, F., Yamakawa, K. and Tsuruta, H. (2000) Effect of Land-Use Changes on Nitrous Oxide (N2O) Emission from Tropical Peatlands. Chemosphere—Global Change Science, 2, 347-358. https://doi.org/10.1016/S1465-9972(00)00030-1
[103]  Huttunen, J.T., Nyk?nen, H., Martikainen, P.J. and Nieminen, M. (2003) Fluxes of Nitrous Oxide and Methane from Drained Peatlands Following Forest Clear-Felling in Southern Finland. Plant and Soil, 255, 457-462. https://doi.org/10.1023/A:1026035427891
[104]  Nyk?nen, H., Vasander, H., Huttunen, J.T. and Martikainen, P.J. (2002) Effect of Experimental Nitrogen Load on Methane and Nitrous Oxide Fluxes on Ombrotrophic Boreal Peatland. Plant and Soil, 242, 147-155. https://doi.org/10.1023/A:1019658428402

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413