Efforts have been made by some researchers to determine machines' economic performance, some considered engineering features, some supply conditions while some look into the productivity as well as profitability of the machine separately. Recently, [1] saw the performance assessment of machine as surrogate problem and they deviate from single strategic decision common in past researches to multi-criteria approach in their research. Considerations were given to: annual operation cost, machine effectiveness and cost effective index as strategic decisions for machine performance evaluation. The model was robust, well integrated but its application is time consuming for decision making. There is no software to address this multi-criteria surrogate problem yet. Available single strategic decision software was of high cost, hence the development of this software that is flexible and novel to proffer solution to this problem using JAVA programming language. The software performance was evaluated using the data gotten from [1]. The summary of each year performance of a case study of cocoa winnowing machine on each of the selected strategic decision from 2008 to 2017, as it affects the machine annual operating cost (MAOC), overall machine effectiveness (MEFF) and cost effective index (CEI), was shown in Table 2. That of the year 2008 was 226,061.365; 0.97; and 0.99 for AOC; MEFF and CEI respectively. These results were statistically analysed and the results’ graphs were shown in Figures 2-5, and Figure 6, respectively. Their results were compared with the results of the software developed and the results were 100% accurate since there was no deviation from the results. Availability of this software makes the developed multi-criteria machine performance assessment model useable anywhere in the world.
Cite this paper
Olagunju, O. R. , Akinnuli, B. O. , Mogaji, P. B. and Awopetu, O. O. (2020). Multi-Criteria Computer Aided System for Industrial Machines' Performance Assessment. Open Access Library Journal, 7, e6862. doi: http://dx.doi.org/10.4236/oalib.1106862.
Akinnuli, B.O. and Oluwadare, S.A. (2011) Computer Aided System for Modelling Machinery Procurement due Date Prediction in Production Industries. Journal of Information Computer Technology, 10, 99-115.
https://doi.org/10.32890/jict.10.2011.8111
Goering, C., Stone, M., Smith, D. and Turnquist, P. (2006) Off-Road Vehicle Engineering Principles. American Society of Agricultural Engineers, St. Joseph.
Srivastava, A., Goering, C., Rohrbach, R. and Buckmaster, D. (2006) Engineering Principles of Agricultural Machinery. American Society of Agricultural and Biological Engineers, St. Joseph.
Yule, I.J., Kohnen, G. and Nowak, M. (1999) A Tractor Performance Monitor with DGPS Capability. Computers and Electronics in Agriculture, 23, 155-174.
https://doi.org/10.1016/S0168-1699(99)00029-0
Schmidt, J.P., Taylor, R.K. and Gehl, R.J. (2003) Developing Topographic Maps Using a Sub-Meter Accuracy Global Positioning Receiver. Applied Engineering in Agriculture, 19, 291-300. https://doi.org/10.13031/2013.13661
Yahya, A., Zohadie, M., Kheiralla, A.F., Giew, S.K. and Boon, N.E. (2009) Mapping System for Tractor-Implement Performance. Computers and Electronics in Agriculture, 69, 2-11. https://doi.org/10.1016/j.compag.2009.06.010
Singh, C.D. and Singh, R.C. (2011) Computerized Instrumentation System for Monitoring the Tractor Performance in the Field. Journal of Terramechanics, 48, 333-338. https://doi.org/10.1016/j.jterra.2011.06.007
Akinnuli, B.O. and Babalola, S.A. (2013) Computer-Aided System for Determining Industrial Machinery Optimal Replacement Period. Journal of Information and Communication Technology, 12, 175-188.
https://doi.org/10.32890/jict.12.2013.8143
Kadiri, M.A. (2000) Scheduling of Preventive Maintenance in a Manufacturing Company: A Computer Model Approach. Unpublished M.Sc. Thesis, Department of Industrial and Production Engineering, University of Ibadan, Ibadan.
Oluwadare, S.A. and Akinnuli, B.O. (2012) A Mixed Linear Programming Model for Real-Time Task Scheduling in Multiprocessor Computer System. Journal of Information and Communication Technology, 11, 17-36.
Hamundu, F.M., Wibowo, S. and Budiarto (2012) A Hybrid Fuzzy-Monte Carlo Simulation Approach for Economical Assessment of the Impact of ERP Technology. Journal of Information and Communication Technology, 12, 93-111.
Akinnuli, B.O., Bekunmi, O.S. and Osueke, C.O. (2015) Design Concept towards Cocoa Winnowing Mechanization for Nibs Production in Manufacturing Industries. British Journal of Applied Science and Technology, 161, 35-45.
https://doi.org/10.9734/BJAST/2015/16161
Adzimah, S.K. and Asiam, E.K. (2010) Design of a Cocoa Pod Splitting Machine. Research Journal of Applied Sciences, Engineering and Technology, 2, 622-634.
Arai, N. and Iwata, S.T. (1997) Cocoa Crop Protection: An Expert Forecast on Future Progress, Research Priorities and Policy with the Help of the Delphi Survey. Crop Protection, 16, 227-233. https://doi.org/10.1016/S0261-2194(96)00099-3
Bozzo, F.T. and Harrison, J.R. (1998) Dominant Coalition Dynamics, the Politics of Organizational Adaptation and Failure. International Conference on Computer Simulation and the Social Science, Cortona.
EEC (1973) Directive 73/241/EEC by European Parliament and the European Council Relating to Cocoa and Chocolate Products Intended for Human Consumption. Official Journal of the European Communities, L228, 23-35.
Harrington, S.F. (1998) Cultivating Cacao: Implications of Sun-Grown Cacao on Local Food Security and Environmental Sustainability. Agriculture and Human Values, 20, 277-285.
Lipp, M. and Anklam, E. (1998) Review of Cocoa Butter and Alternative Fats for Use in Chocolate—Part A. Compositional Data. Food Chemistry, 62, 73-79.
https://doi.org/10.1016/S0308-8146(97)00160-X
Oluwadare, S.A. and Akinnuli, B.O. (2012) A Mixed Integer Linear Programming Model for Real-Time Task Scheduling in Multiprocessor Computer System. Journal of Information and Communication Technology, 12, 17-36.