全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

The Fabrication of Composite Material Based on Natural Macromolecules: A Review

DOI: 10.4236/oalib.1106977, PP. 1-9

Subject Areas: Composite Material

Keywords: Fabrication, Composite Material, Natural Macromolecules

Full-Text   Cite this paper   Add to My Lib

Abstract

The consciousness of environmental & ecological impact has attained great attention for the preparation of new material & various end-used applications. Macromolecules synthesized from natural resources have increased compared to synthetic resources in recent years. The fabrication of composite materials has another concept for increasing the durable properties of composite materials. This review paper focused on the fabrication of composite materials based on some natural sources macromolecules. Different types of macromolecules present in different fiber used in various fabrication. Here, wood, silk & wool based macromolecules are described, where wood was from plant sources and silk & wool was animal sources. The data cover the application of these natural macromolecules for the fabrication of composite materials. This review concludes that the fabrication of composite materials is one of the emerging areas in polymer science that gain attention for use in various applications.

Cite this paper

Mia, R. , Shuva, I. B. , Mamun, A. A. , Bakar, A. , Rumman, F. I. and Rahman, M. (2020). The Fabrication of Composite Material Based on Natural Macromolecules: A Review. Open Access Library Journal, 7, e6977. doi: http://dx.doi.org/10.4236/oalib.1106977.

References

[1]  Zhang, M.Q., Rong, M.Z. and Lu, X. (2005) Fully Biodegradable Natural Fiber Composites from Renewable Resources: All-Plant Fiber Composites. Composites Science and Technology, 65, 2514-2525. https://doi.org/10.1016/j.compscitech.2005.06.018
[2]  Pappu, A., Patil, V., Jain, S., Mahindrakar, A., Haque, R. and Thakur, V.K. (2015) Advances in Industrial Prospective of Cellulosic Macromolecules Enriched Banana Biofibre Resources: A Review. International Journal of Biological Macromolecules, 79, 449-458. https://doi.org/10.1016/j.ijbiomac.2015.05.013
[3]  Gurunathan, T., Mohanty, S. and Nayak, S.K. (2015) A Review of the Recent Developments in Biocomposites Based on Natural Fibres and Their Application Perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25. https://doi.org/10.1016/j.compositesa.2015.06.007
[4]  Stevanovic, Z.D., Sieniawska, E., Glowniak, K., Obradovic, N. and Pajic-Lijakovic, I. (2020) Natural Macromolecules as Carriers for Essential Oils: From Extraction to Biomedical Application. Frontiers in Bioengineering and Biotechnology, 8, Article 563. https://doi.org/10.3389/fbioe.2020.00563
[5]  Hopfinger, A. (2012) Conformational Properties of Macromolecules. Elsevier, Amsterdam.
[6]  Tomalia, D.A., et al. (1985) A New Class of Polymers: Starburst-Dendritic Macromolecules. Polymer Journal, 17, 117-132. https://doi.org/10.1295/polymj.17.117
[7]  Carson, M. (1987) Ribbon Models of Macromolecules. Journal of Molecular Graphics, 5, 103-106. https://doi.org/10.1016/0263-7855(87)80010-3
[8]  Hecht, S. (2005) Construction with Macromolecules. Materials Today, 8, 48-55. https://doi.org/10.1016/S1369-7021(05)00747-9
[9]  Bernal, J. (1958) General Introduction Structure Arrangements of Macromolecules. Discussions of the Faraday Society, 25, 7-18. https://doi.org/10.1039/df9582500007
[10]  Sun, S. (1994) Physical Chemistry of Macromolecules. John Willey and Sons Inc., New York.
[11]  Yousif, B. and El-Tayeb, N. (2007) Tribological Evaluations of Polyester Composites Considering Three Orientations of CSM Glass Fibres Using BOR Machine. Applied Composite Materials, 14, 105-116. https://doi.org/10.1007/s10443-007-9034-2
[12]  Mia, R., Selim, M., Shamim, A., Chowdhury, M. and Sultana, S. (2019) Review on Various Types of Pollution Problem in Textile Dyeing & Printing Industries of Bangladesh and Recommandation for Mitigation. Journal of Textile Engineering & Fashion Technology, 5, 220-226. https://doi.org/10.15406/jteft.2019.05.00205
[13]  Okolie, C.L., Akanbi, T.O., Mason, B., Udenigwe, C.C. and Aryee, A.N. (2019) Influence of Conventional and Recent Extraction Technologies on Physicochemical Properties of Bioactive Macromolecules from Natural Sources: A Review. Food Research International, 116, 827-839. https://doi.org/10.1016/j.foodres.2018.09.018
[14]  Hieke, A. (2011) Methods and Apparatus for Ion Sources, Ion Control and Ion Measurement for Macromolecules. Google Patents.
[15]  Chandramohan, D. and Marimuthu, K. (2011) A Review on Natural Fibers. International Journal of Research and Reviews in Applied Sciences, 8, 194-206.
[16]  Kicińska-Jakubowska, A., Bogacz, E. and Zimniewska, M. (2012) Review of Natural Fibers. Part I—Vegetable Fibers. Journal of Natural Fibers, 9, 150-167. https://doi.org/10.1080/15440478.2012.703370
[17]  M. Sajib, B. Banna, and R. Mia, (2020) Mosquito Repellent Finishes on Textile Fabrics (Woven & Knit) by Using Different Medicinal Natural Plants. Journal of Textile Engineering & Fashion Technology, 6, 164-167.
[18]  Anderson, J.W. and Chen, W.L. (1979) Plant Fiber. Carbohydrate and Lipid Metabolism. The American Journal of Clinical Nutrition, 32, 346-363. https://doi.org/10.1093/ajcn/32.2.346
[19]  Han, J.S. (1998) Properties of Nonwood Fibers. In: Proceedings of the Korean Society of Wood Science and Technology Annual Meeting, The Korean Society of Science and Technology, Seoul, 3-12.
[20]  Englyst, H.N. and Kingman, S.M. (1990) Dietary Fiber and Resistant Starch. In: Dietary Fiber, Springer, Berlin, 49-65. https://doi.org/10.1007/978-1-4613-0519-4_4
[21]  Azwa, Z., Yousif, B., Manalo, A. and Karunasena, W. (2013) A Review on the Degradability of Polymeric Composites Based on Natural Fibres. Materials & Design, 47, 424-442. https://doi.org/10.1016/j.matdes.2012.11.025
[22]  Satyanarayana, K.G., Arizaga, G.G. and Wypych, F. (2009) Biodegradable Composites Based on Lignocellulosic Fibers—An Overview. Progress in Polymer Science, 34, 982-1021. https://doi.org/10.1016/j.progpolymsci.2008.12.002
[23]  Wang, J., Zhang, D. and Chu, F. (2020) Wood-Derived Functional Polymeric Materials. Advanced Materials, Article ID: 2001135. https://doi.org/10.1002/adma.202001135
[24]  Christensen, R. (1980) A Nonlinear Theory of Viscoelasticity for Application to Elastomers. Journal of Applied Mechanics, 47, 762-768. https://doi.org/10.1115/1.3153787
[25]  Voda, M., Demco, D., Perlo, J., Orza, R. and Blümich, B. (2005) Multispin Moments Edited by Multiple-Quantum NMR: Application to Elastomers. Journal of Magnetic Resonance, 172, 98-109. https://doi.org/10.1016/j.jmr.2004.10.001
[26]  Puskas, J.E. and Chen, Y. (2004) Biomedical Application of Commercial Polymers and Novel Polyisobutylene-Based Thermoplastic Elastomers for Soft Tissue Replacement. Biomacromolecules, 5, 1141-1154. https://doi.org/10.1021/bm034513k
[27]  Haly, A. and Feughelman, M. (1957) Application of Statistical Theory of Elastomers to Supercontracted Keratin Fibers. Textile Research Journal, 27, 919-924. https://doi.org/10.1177/004051755702701201
[28]  Gary, J.J. and Smith, C.T. (1998) Pigments and Their Application in Maxillofacial Elastomers: A Literature Review. The Journal of Prosthetic Dentistry, 80, 204-208. https://doi.org/10.1016/S0022-3913(98)70111-8
[29]  Liu, Y., et al. (2014) Sustainable Thermoplastic Elastomers Derived from Renewable Cellulose, Rosin and Fatty Acids. Polymer Chemistry, 5, 3170-3181. https://doi.org/10.1039/c3py01260c
[30]  Jiang, F., Wang, Z., Qiao, Y., Wang, Z. and Tang, C. (2013) A Novel Architecture toward Third-Generation Thermoplastic Elastomers by a Grafting Strategy. Macromolecules, 46, 4772-4780. https://doi.org/10.1021/ma4007472
[31]  Yu, J., Lu, C., Wang, C., Wang, J., Fan, Y. and Chu, F. (2017) Sustainable Thermoplastic Elastomers Derived from Cellulose, Fatty Acid and Furfural via ATRP and Click Chemistry. Carbohydrate Polymers, 176, 83-90. https://doi.org/10.1016/j.carbpol.2017.08.060
[32]  Kim, J., Yun, S. and Ounaies, Z. (2006) Discovery of Cellulose as a Smart Material. Macromolecules, 39, 4202-4206. https://doi.org/10.1021/ma060261e
[33]  Wang, Z., Jiang, F., Zhang, Y., You, Y., Wang, Z. and Guan, Z. (2015) Bioinspired Design of Nanostructured Elastomers with Cross-Linked Soft Matrix Grafting on the Oriented Rigid Nanofibers to Mimic Mechanical Properties of Human Skin. ACS Nano, 9, 271-278. https://doi.org/10.1021/nn506960f
[34]  Wang, Z., Zhang, Y., Jiang, F., Fang, H. and Wang, Z. (2014) Synthesis and Characterization of Designed Cellulose-Graft-Polyisoprene Copolymers. Polymer Chemistry, 5, 3379-3388. https://doi.org/10.1039/c3py01574b
[35]  Kato, N., Sato, S., Yamanaka, A., Yamada, H., Fuwa, N. and Nomura, M. (1998) Silk Protein, Sericin, Inhibits Lipid Peroxidation and Tyrosinase Activity. Bioscience, Biotechnology, and Biochemistry, 62, 145-147. https://doi.org/10.1271/bbb.62.145
[36]  Zhang, Y.-Q. (2002) Applications of Natural Silk Protein Sericin in Biomaterials. Biotechnology Advances, 20, 91-100. https://doi.org/10.1016/S0734-9750(02)00003-4
[37]  Arai, T., Freddi, G., Innocenti, R., Kaplan, D. and Tsukada, M. (2001) Acylation of Silk and Wool with Acid Anhydrides and Preparation of Water-Repellent Fibers. Journal of Applied Polymer Science, 82, 2832-2841. https://doi.org/10.1002/app.2137
[38]  Arai, T., Freddi, G., Innocenti, R. and Tsukada, M. (2003) Preparation of Water-Repellent Silks by a Reaction with Octadecenylsuccinic Anhydride. Journal of Applied Polymer Science, 89, 324-332. https://doi.org/10.1002/app.12081
[39]  Hardy, J.G. and Scheibel, T.R. (2010) Composite Materials Based on Silk Proteins. Progress in Polymer Science, 35, 1093-1115. https://doi.org/10.1016/j.progpolymsci.2010.04.005
[40]  Sutherland, T.D., Young, J.H., Weisman, S., Hayashi, C.Y. and Merritt, D.J. (2010) Insect Silk: One Name, Many Materials. Annual Review of Entomology, 55, 171-188. https://doi.org/10.1146/annurev-ento-112408-085401
[41]  Prachayawarakorn, J. and Boonsawat, K. (2007) Physical, Chemical, and Dyeing Properties of Bombyx mori Silks Grafted by 2-Hydroxyethyl Methacrylate and Methyl Methacrylate. Journal of Applied Polymer Science, 106, 1526-1534. https://doi.org/10.1002/app.26586
[42]  Prachayawarakorn, J. and Khanchaiyapoom, K. (2010) Dyeing Properties of Bombyx mori Silks Grafted by 2-Hydroxyethyl Methacrylate (HEMA). Fibers and Polymers, 11, 1010-1017. https://doi.org/10.1007/s12221-010-1010-z
[43]  Cates, D.M. and White Jr., H.J. (1956) Preparation and Properties of Fibers Containing Mixed Polymers. III. Polyacrylonitrile-Silk Fibers. Journal of Polymer Science, 21, 125-138. https://doi.org/10.1002/pol.1956.120219711
[44]  Sun, Y., Shao, Z., Ma, M., Hu, P., Liu, Y. and Yu, T. (1997) Acrylic Polymer-Silk Fibroin Blend Fibers. Journal of Applied Polymer Science, 65, 959-966. https://doi.org/10.1002/(SICI)1097-4628(19970801)65:5<959::AID-APP14>3.0.CO;2-N
[45]  Marsano, E., Canetti, M., Conio, G., Corsini, P. and Freddi, G. (2007) Fibers Based on Cellulose-Silk Fibroin Blend. Journal of Applied Polymer Science, 104, 2187-2196. https://doi.org/10.1002/app.24856
[46]  Gulrajani, M., Gupta, D., Periyasamy, S. and Muthu, S. (2008) Preparation and Application of Silver Nanoparticles on Silk for Imparting Antimicrobial Properties. Journal of Applied Polymer Science, 108, 614-623. https://doi.org/10.1002/app.27584
[47]  Tu, H., et al. (2016) Programing Performance of Wool Keratin and Silk Fibroin Composite Materials by Mesoscopic Molecular Network Reconstruction. Advanced Functional Materials, 26, 9032-9043. https://doi.org/10.1002/adfm.201603403
[48]  Novotny, E.H. and Hedges, L.M. (1955) Method and Apparatus for Fiber Collection. Google Patents.
[49]  Parsons, J.R. (1941) Apparatus for Producing Mineral Wool. Google Patents.
[50]  Mia, R., Islam, M.A., Ahmed, B. and Mojumdar, J.I.A. (2017) Woolenization of Jute Fibre. European Scientific Journal, 13, 314-326. https://doi.org/10.19044/esj.2017.v13n30p314
[51]  Kim, N., Lin, R. and Bhattacharyya, D. (2014) Extruded Short Wool Fibre Composites: Mechanical and Fire Retardant Properties. Composites Part B: Engineering, 67, 472-480. https://doi.org/10.1016/j.compositesb.2014.08.002
[52]  Yallew, T.B., Kumar, P. and Singh, I. (2016) Mechanical Behavior of Nettle/Wool Fabric Reinforced Polyethylene Composites. Journal of Natural Fibers, 13, 610-618. https://doi.org/10.1080/15440478.2015.1093576

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413