全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Molecular Cloning, Bioinformatic Analysis, and Expression Control of DXS Gene in Isochrysis zhanjiangensis

DOI: 10.4236/oalib.1111852, PP. 1-17

Subject Areas: Molecular Biology

Keywords: Isochrysis zhanjiangensis, Fucoxanthin, Bioinformatic Characteristics, Elicitors, Transcript-Level Expression

Full-Text   Cite this paper   Add to My Lib

Abstract

Fucoxanthin, a compound with anti-cancer, antioxidant, anti-diabetic, and anti-obesity properties, can be produced in Isochrysis zhanjiangensis, a microalga. A key rate-limiting enzyme in MEP pathway for fucoxanthin biosynthesis is 1-deoxy-D-xylulose-5-phosphate synthase (IzDXS). This study aims to investigate the characteristics of IzDXS gene and protein and provide methods to enhance fucoxanthin yield considering its wide potential applications. Bioinformatic analysis, phylogenic analysis, and expression control experiments were conducted based on the sequence of IzDXS gene. Bioinformatic analyses revealed significant motifs and a new potential phosphorylation site, S154, in IzDXS. Phylogenetic analysis suggested a reevaluation of I. zhanjiangensis’s classification. Expression control results identified glycine as the most effective elicitor that increased fucoxanthin yield by 55.2 ± 4.1%, highlighting its unique role in enhancing IzDXS gene expression. Other elicitors increased IzDXS mRNA levels but not fucoxanthin yield, indicating complex interactions among transcriptional and post-translational processes affecting fucoxanthin synthesis. This study provides foundational data on DXS and fucoxanthin in I. zhanjiangensis, supporting further research into their biosynthesis and regulation.

Cite this paper

Wang, C. , Zhang, K. and Gong, Y. (2024). Molecular Cloning, Bioinformatic Analysis, and Expression Control of DXS Gene in Isochrysis zhanjiangensis. Open Access Library Journal, 11, e1852. doi: http://dx.doi.org/10.4236/oalib.1111852.

References

[1]  Ahmed, S.A., Mendonca, P., Elhag, R. and Soliman, K.F.A. (2022) Anticancer Effects of Fucoxanthin through Cell Cycle Arrest, Apoptosis Induction, Angiogenesis Inhibition, and Autophagy Modulation. International Journal of Molecular Sciences, 23, Article 16091. https://doi.org/10.3390/ijms232416091
[2]  Lopes-Costa, E., Abreu, M., Gargiulo, D., Rocha, E. and Ramos, A.A. (2017) Anticancer Effects of Seaweed Compounds Fucoxanthin and Phloroglucinol, Alone and in Combination with 5-Fluorouracil in Colon Cells. Journal of Toxicology and Environmental Health, Part A, 80, 776-787. https://doi.org/10.1080/15287394.2017.1357297
[3]  Wang, Z., Li, H., Dong, M., Zhu, P. and Cai, Y. (2019) The Anticancer Ef-fects and Mechanisms of Fucoxanthin Combined with Other Drugs. Journal of Cancer Research and Clinical Oncology, 145, 293-301. https://doi.org/10.1007/s00432-019-02841-2
[4]  Ahmed, S., Mendonca, P., Messeha, S.S. and Soliman, K.F. (2023). Marine Carotenoid Fucoxanthin as a Promising Anticancer Therapeutic against Triple-Negative Breast Cancer (TNBC). Journal of Pharmacology and Experimental Therapeutics, 385, Abstract ID: 17637. https://doi.org/10.1124/jpet.122.176370
[5]  Noviendri, D., Hasrini, R.F. and Taher, M. (2021) Fucoxanthin: A Marine Carote-noid Has Anticancer Activities and Apoptosis-Inducing Effect (a Review). IOP Conference Series: Earth and Environmental Sci-ence, 674, Article ID: 012093. https://doi.org/10.1088/1755-1315/674/1/012093
[6]  Neumann, U., Derwenskus, F., Flaiz Flister, V., Schmid-Staiger, U., Hirth, T. and Bischoff, S. (2019) Fucoxanthin, a Carotenoid Derived from Phaeodactylum tricornu-tum Exerts Antiproliferative and Antioxidant Activities in Vitro. Antioxidants, 8, Article 183. https://doi.org/10.3390/antiox8060183
[7]  Arunkumar, K., Nalluri, M., Anjana, K., Mohan, G. and Raja, R. (2023) Fucoxanthin as Antioxidant, Anti-Hyaluronidase and Cytotoxic Agent: Potential of Brown Seaweeds Decoction for Tea Supplement. Journal of Food Measurement and Characterization, 17, 3980-3989. https://doi.org/10.1007/s11694-023-01911-x
[8]  Qiu, S., Shen, Y., Wu, Z., Zhang, X. and Ge, S. (2021) Effects of Algae Subtype and Extraction Condition on Extracted Fucoxanthin Antioxidant Property: A 20-Year Meta-Analysis. Algal Research, 53, Article ID: 102161. https://doi.org/10.1016/j.algal.2020.102161
[9]  Foo, S.C., Khong, N.M.H. and Yusoff, F.M. (2020) Physicochemical, Micro-structure and Antioxidant Properties of Microalgae-Derived Fucoxanthin Rich Microcapsules. Algal Research, 51, Article ID: 102061. https://doi.org/10.1016/j.algal.2020.102061
[10]  Maeda, H. (2015) Nutraceutical Effects of Fucoxanthin for Obesity and Diabetes Therapy: A Review. Journal of Oleo Science, 64, 125-132. https://doi.org/10.5650/jos.ess14226
[11]  Zarekarizi, A., Hoffmann, L. and Burritt, D. (2018) Approaches for the Sustainable Production of Fucoxanthin, a Xanthophyll with Potential Health Benefits. Journal of Applied Phycology, 31, 281-299. https://doi.org/10.1007/s10811-018-1558-3
[12]  Spagolla Napo-leão Tavares, R., Stuchi Maria-Engler, S., Colepicolo, P., Debonsi, H.M., Schäfer-Korting, M., Marx, U., et al. (2020) Skin Irritation Testing Beyond Tissue Viability: Fucoxanthin Effects on Inflammation, Homeostasis, and Metabolism. Pharmaceutics, 12, Article 136. https://doi.org/10.3390/pharmaceutics12020136
[13]  Xiao, X., Si, X., Yuan, Z., Xu, X. and Li, G. (2012) Isolation of Fuco-xanthin from Edible Brown Algae by Microwave-Assisted Extraction Coupled with High-Speed Countercurrent Chromatography. Journal of Separation Science, 35, 2313-2317. https://doi.org/10.1002/jssc.201200231
[14]  Kanazawa, K., Ozaki, Y., Hashimoto, T., Das, S.K., Matsushita, S., Hirano, M., et al. (2008) Commercial-Scale Preparation of Biofunctional Fucoxanthin from Waste Parts of Brown Sea Algae Laminalia Japonica. Food Science and Technology Research, 14, 573-582. https://doi.org/10.3136/fstr.14.573
[15]  Kim, S.M., Jung, Y., Kwon, O., Cha, K.H., Um, B., Chung, D., et al. (2012) A Potential Commercial Source of Fucoxanthin Extracted from the Microalga Phaeodactylum tricornutum. Applied Biochemistry and Bio-technology, 166, 1843-1855. https://doi.org/10.1007/s12010-012-9602-2
[16]  Mori, K., Ooi, T., Hiraoka, M., Oka, N., Hamada, H., Tamura, M., et al. (2004) Fucoxanthin and Its Metabolites in Edible Brown Algae Cultivated in Deep Seawater. Marine Drugs, 2, 63-72. https://doi.org/10.3390/md202063
[17]  Kim, S., Kim, H., Moon, J., Kim, J., Kang, S. and Jung, S. (2004) Characteristic and Extraction of Fucoxanthin Pigment in Undaria Pinnatifida. Journal of the Korean Society of Food Science and Nutrition, 33, 847-851.
[18]  Kim, S.M., Kang, S., Kwon, O., Chung, D. and Pan, C. (2012) Fucoxanthin as a Major Carotenoid in Isochrysis aff. Galbana: Characterization of Extraction for Commercial Application. Journal of the Korean Society for Applied Biological Chem-istry, 55, 477-483. https://doi.org/10.1007/s13765-012-2108-3
[19]  Xia, S., Wang, K., Wan, L., Li, A., Hu, Q. and Zhang, C. (2013) Production, Characterization, and Antioxidant Activity of Fucoxanthin from the Marine Diatom Odontella aurita. Marine Drugs, 11, 2667-2681. https://doi.org/10.3390/md11072667
[20]  Lv, B., Liu, Z., Chen, Y., Lan, S., Mao, J., Gu, Z., et al. (2022) Effect of Different Colored LED Lighting on the Growth and Pigment Content of Isochrysis Zhanjiangensis under Laboratory Conditions. Journal of Marine Science and Engineering, 10, Article 1752. https://doi.org/10.3390/jmse10111752
[21]  Yuan, G., Cao, X., Zhu, Z., Yang, M., Jiang, J., Fan, X., et al. (2019) The Heat-Tolerance Evaluation of an Isochrysis Zhangjiangensis Mutant Generated by Atmospheric and Room Temperature Plasmas. AMB Express, 9, Article No. 68. https://doi.org/10.1186/s13568-019-0792-7
[22]  Srinath, M., Shailaja, A., Bindu, B.B.V. and Giri, C.C. (2020) Molecular Cloning and Differential Gene Expression Analysis of 1-Deoxy-D-Xylulose 5-Phosphate Synthase (DXS) in Andrographis paniculata (Burm. F) Nees. Molecular Biotechnology, 63, 109-124. https://doi.org/10.1007/s12033-020-00287-3
[23]  Vaccaro, M., Ocampo Bernal, V., Malafronte, N., De Tommasi, N. and Leone, A. (2019) High Yield of Bioactive Abietane Diterpenes in Salvia sclarea Hairy Roots by Overexpressing Cyanobacterial DXS or DXR Genes. Planta Medica, 85, 973-980. https://doi.org/10.1055/a-0895-5878
[24]  Hoqani, U.A., León, R. and Purton, S. (2022) Over-Expression of a Cyanobacterial Gene for 1-Deoxy-D-Xylulose-5-Phosphate Synthase in the Chloroplast of Chlamydomonas Reinhardtii Perturbs Chlorophyll: Carotenoid Ratios. Journal of King Saud University—Science, 34, Article ID: 102141. https://doi.org/10.1016/j.jksus.2022.102141
[25]  Zheng, J., Zhuang, Y., Mao, H. and Jang, I. (2019) Overexpression of Srdxs1 and Srkah Enhances Steviol Glycosides Content in Transgenic Stevia Plants. BMC Plant Biology, 19, Article No. 1. https://doi.org/10.1186/s12870-018-1600-2
[26]  Gong, Y., Liao, Z., Guo, B., Sun, X. and Tang, K. (2006) Molecular Cloning and Expression Profile Analysis of Ginkgo biloba Dxs Gene Encoding 1-Deoxy-d-Xylulose 5-Phosphate Synthase, the First Committed Enzyme of the 2-C-Methyl-D-Erythritol 4-Phosphate Pathway. Planta Medica, 72, 329-335. https://doi.org/10.1055/s-2005-916234
[27]  Li, W., Li, W., Yang, S., Ma, Z., Zhou, Q., Mao, J., et al. (2020) Transcriptome and Metabolite Conjoint Analysis Reveals That Exogenous Methyl Jasmonate Regulates Monoterpene Synthesis in Grape Berry Skin. Journal of Agricultural and Food Chemistry, 68, 5270-5281. https://doi.org/10.1021/acs.jafc.0c00476
[28]  Zhang, Y., Zhao, Y., Wang, J., Hu, T., Tong, Y., Zhou, J., et al. (2019) The Expression of TwDXS in the MEP Pathway Specifically Affects the Accumula-tion of Triptolide. Physiologia Plantarum, 169, 40-48. https://doi.org/10.1111/ppl.13051
[29]  Zhu, Y., Wang, L., Chai, Y. and Gong, Y.F. (2010) Effect of Methyl Jasmonate on the Content of β-Carotene of Dunaliella Salina. Journal of Ningbo University, 23, 13-17.
[30]  Wang, X., Wang, L., Gong, Y., Jin, S., Li, L. and Chen, D. (2011) The Effects of Methyl Jasmonate (MeJA) on the Astaxanthin Production DXS Gene Expression of Haematococcus pluvialis. Journal of Fisheries of China, 35, 1823-1829.
[31]  Li, S., Zheng, X., Fang, Q., Gong, Y. and Wang, H. (2021) Exploring the Potential of Photosynthetic Induction Factor for the Commer-cial Production of Fucoxanthin in Phaeodactylum tricornutum. Bioprocess and Biosystems Engineering, 44, 1769-1779. https://doi.org/10.1007/s00449-021-02559-x
[32]  Kim, B.G., Yang, S.M., Kim, S.Y., Cha, M.N. and Ahn, J. (2015) Biosynthesis and Production of Glycosylated Flavonoids in Escherichia Coli: Current State and Perspectives. Applied Microbiology and Biotech-nology, 99, 2979-2988. https://doi.org/10.1007/s00253-015-6504-6
[33]  Zheng, X., Gong, Y., Li, S., Fang, Q., Wang, H. and Tang, D. (2020) Effects of the Photosynthesis Inhibitor DCMU on Fucoxanthin Content, Chlorophyll Fluorescence Characteristics and Key Genes of Phaeodactylum tricornutum. Journal of Nuclear Agricultural Sciences, 34, 1705-1712.
[34]  Koo, Y.M., Heo, A.Y. and Choi, H.W. (2020) Salicylic Acid as a Safe Plant Protector and Growth Regulator. The Plant Pathology Journal, 36, 1-10. https://doi.org/10.5423/ppj.rw.12.2019.0295
[35]  Xu, C., Wei, H., Movahedi, A., Sun, W., Ma, X., Li, D., et al. (2019) Evaluation, Characterization, Expression Profiling, and Functional Analysis of DXS and DXR Genes of Populus trichocarpa. Plant Physiology and Biochemistry, 142, 94-105. https://doi.org/10.1016/j.plaphy.2019.05.034
[36]  Khemvong, S. and Suvachittanont, W. (2005) Molecular Cloning and Expression of a Cdna Encoding 1-Deoxy-D-Xylulose-5-Phosphate Synthase from Oil Palm Elaeis guineensis Jacq. Plant Science, 169, 571-578. https://doi.org/10.1016/j.plantsci.2005.05.001
[37]  Chapman, V.J. and Chapman, D.J. (1973) Chrysophyta Bacillariophyta. In: Chapman, V.J. and Chapman, D.J., Eds., The Algae, Palgrave, 159-182. https://doi.org/10.1007/978-1-349-27910-4_8
[38]  Lee, J., Oh, D. and Kim, S. (2007) Cloning and Characterization of the Dxs Gene, Encoding 1-Deoxy-D-Xylulose 5-Phosphate Synthase from Agrobacterium tumefaciens, and Its Overexpression in Agro-bacterium tumefaciens. Journal of Biotechnology, 128, 555-566. https://doi.org/10.1016/j.jbiotec.2006.11.009
[39]  DeColli, A.A., Zhang, X., Heflin, K.L., Jordan, F. and Freel Meyers, C.L. (2019) Active Site Histidines Link Conformational Dynamics with Catalysis on Anti-Infective Target 1-Deoxy-D-Xylulose 5-Phosphate Synthase. Biochemistry, 58, 4970-4982. https://doi.org/10.1021/acs.biochem.9b00878
[40]  Gierse, R.M., Oerlemans, R., Reddem, E.R., Gawriljuk, V.O., Alhayek, A., Bait-inger, D., et al. (2022) First Crystal Structures of 1-Deoxy-D-Xylulose 5-Phosphate Synthase (DXPS) from Mycobacterium Tu-berculosis Indicate a Distinct Mechanism of Intermediate Stabilization. Scientific Reports, 12, Article No. 7221. https://doi.org/10.1038/s41598-022-11205-9
[41]  Willetts, A. (1980) Growth of Penicillium janthinellum on Glycine as Sole Carbon and Nitrogen Source. Biochimica et Biophysica Acta (BBA)—General Subjects, 632, 454-463. https://doi.org/10.1016/0304-4165(80)90241-x
[42]  Newman, E.B. and Walker, C. (1982) L-Serine Degradation in Escherichia coli K-12: A Combination of L-Serine, Glycine, and Leucine Used as a Source of Carbon. Journal of Bacteriology, 151, 777-782. https://doi.org/10.1128/jb.151.2.777-782.1982

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413