全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Exploratory Analysis of Algeria Meteorological Drought Using SPI and SPEI

DOI: 10.4236/oalib.1111897, PP. 1-27

Subject Areas: Atmospheric Sciences

Keywords: Algeria, Famine, SPI, SPEI, Thornthwaite Method

Full-Text   Cite this paper   Add to My Lib

Abstract

Drought frequency has increased worldwide in recent years due to global warming, causing famine, water shortage, and economic loss. This paper aimed to assess the meteorological drought in Algeria, using two globally accepted drought indices, Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). The SPI and SPEI at 3-, 6-, 9-, and 12-month timescale were obtained to analyze the temporal variability of different drought levels. Pearson correlation was employed to explore relationships between SPI and SPEI values. The results show that the period 1999 to 2001, 2009, 2010 and 2016 years are observed as drought periods by both indices for all timescales. As indicated by both SPI and SPEI indices at different timescales the year after which the intensity and duration of drought notably increased was 1999. A negative trend of both the indices has been observed in all timescales, which clearly shows a transition from near normal to moderately dry during the selected time period. The highest correlation between both indices is for the 3-month scale with (r = 0.73). The main outcome of this study is that both SPI and SPEI show a strong correlation at the same time scales adopted in this study. The dependency of SPEI on temperature is also observed in this study. These findings highlight the consistency in identifying severe drought periods by both SPI and SPEI indices.

Cite this paper

Choutri, I. and Hussien, A. (2024). Exploratory Analysis of Algeria Meteorological Drought Using SPI and SPEI. Open Access Library Journal, 11, e1897. doi: http://dx.doi.org/10.4236/oalib.1111897.

References

[1]  Lorenzo-Lacruz, J., Vicente-Serrano, S.M., López-Moreno, J.I., Beguería, S., Gar-cía-Ruiz, J.M. and Cuadrat, J.M. (2010) The Impact of Droughts and Water Management on Various Hydrological Systems in the Headwaters of the Tagus River (Central Spain). Journal of Hydrology, 386, 13-26. https://doi.org/10.1016/j.jhydrol.2010.01.001
[2]  Du, L., Tian, Q., Yu, T., Meng, Q., Jancso, T., Udvardy, P., et al. (2013) A Comprehensive Drought Mon-itoring Method Integrating MODIS and TRMM Data. International Journal of Applied Earth Observation and Geoinformation, 23, 245-253. https://doi.org/10.1016/j.jag.2012.09.010
[3]  Huang, S., Li, P., Huang, Q., Leng, G., Hou, B. and Ma, L. (2017) The Propagation from Meteorological to Hydrological Drought and Its Potential Influence Factors. Journal of Hydrology, 547, 184-195. https://doi.org/10.1016/j.jhydrol.2017.01.041
[4]  Wilhite, D.A. and Glantz, M.H. (1985) Understanding: The Drought Phenomenon: The Role of Definitions. Water International, 10, 111-120. https://doi.org/10.1080/02508068508686328
[5]  Yihdego, Y., Webb, J. and Vaheddoost, B. (2017) Highlighting the Role of Groundwater in Lake—Aquifer Interaction to Reduce Vulnerability and Enhance Resilience to Climate Change. Hydrology, 4, Article 10. https://doi.org/10.3390/hydrology4010010
[6]  Yihdego, Y., Salem, H.S. and Muhammed, H.H. (2019) Agricultural Pest Management Policies during Drought: Case Studies in Australia and the State of Palestine. Natural Hazards Review, 20, 05018010-1-05018010-10. https://doi.org/10.1061/(asce)nh.1527-6996.0000312
[7]  Park, S., Im, J., Park, H. and Lee, S. (2019) Spatial and Temporal Variation of Drought Based on Standardized Precipitation Evapotranspiration Index in South Korea. Theoreti-cal and Applied Climatology, 138, 253-265.
[8]  Wilhite, D.A., Svoboda, M.D. and Hayes, M.J. (2007) Understanding the Complex Impacts of Drought: A Key to Enhancing Drought Mitigation and Preparedness. Water Resources Manage-ment, 21, 763-774. https://doi.org/10.1007/s11269-006-9076-5
[9]  Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., et al. (2002) The Drought Monitor. Bulletin of the American Meteorological Society, 83, 1181-1190. https://doi.org/10.1175/1520-0477-83.8.1181
[10]  Van Rooy, M.P. (1965) A Rainfall Anomaly Index (RAI) Independent of Time and Space. Notos, 14, 43-48.
[11]  Palmer, W.C. (1965). Meteorological Drought. Weather Bureau Research Paper No. 45.
[12]  Guttman, N.B. (1998) Comparing the Palmer Drought Index and the Standardized Precipitation Index. JAWRA Journal of the American Water Resources Association, 34, 113-121. https://doi.org/10.1111/j.1752-1688.1998.tb05964.x
[13]  Karl, T.R. (1983) Some Spatial Characteristics of Drought Duration in the United States. Journal of Climate and Applied Meteorology, 22, 1356-1366. https://doi.org/10.1175/1520-0450(1983)022<1356:sscodd>2.0.co;2
[14]  McKee, T.B., Doesken, N.J. and Kleist, J. (1993) The Relationship of Drought Frequency and Duration to Time Scales. AMS 8th Conference on Applied Cli-matology, Anaheim, 17-22 January 1993, 179-184.
[15]  McKee, T.B., Doesken, N.J. and Kleist, J. (1995) Drought Monitoring with Multiple Time Scales. 9th Conference on Applied Climatology, Dallas, January 15-20 1995, 233-236.
[16]  Redmond, K.T. (2002) The Depiction of Drought. Bulletin of the American Meteorological Society, 83, 1143-1148. https://doi.org/10.1175/1520-0477-83.8.1143
[17]  Hayes, M.J., Svoboda, M.D., Wilhite, D.A. and Vanyarkho, O.V. (1999) Monitoring the 1996 Drought Using the Standardized Precipitation Index. Bulletin of the American Meteoro-logical Society, 80, 429-438. https://doi.org/10.1175/1520-0477(1999)080<0429:mtduts>2.0.co;2
[18]  Lana, X., Serra, C. and Burgueño, A. (2001) Patterns of Monthly Rainfall Short-age and Excess in Terms of the Standardized Precipitation Index for Catalonia (NE Spain). International Journal of Climatology, 21, 1669-1691. https://doi.org/10.1002/joc.697
[19]  Sönmez, F.K., Kömüscü, A.ü., Erkan, A. and Turgu, E. (2005) An Analysis of Spatial and Temporal Dimension of Drought Vulnerability in Turkey Using the Standardized Precipitation Index. Natural Hazards, 35, 243-264. https://doi.org/10.1007/s11069-004-5704-7
[20]  Moreira, E., Pires, C. and Pereira, L. (2016) SPI Drought Class Predictions Driven by the North Atlantic Oscillation Index Using Log-Linear Modeling. Water, 8, Article 43. https://doi.org/10.3390/w8020043
[21]  Oki, T. and Kanae, S. (2006) Global Hydrological Cycles and World Water Resources. Science, 313, 1068-1072. https://doi.org/10.1126/science.1128845
[22]  Megnounif, A. and Ghenim, A.N. (2013) Influence des fluctuations hydro-pluviométriques sur la production des sédiments: Cas du bassin de la Haute Tafna. Revue des sciences de l’eau, 26, 53-62. https://doi.org/10.7202/1014919ar
[23]  Seltzer, P. (1946) Le climat de l’Algérie. Travaux de l’Institut de météorologie et de physique du globe de l’Algérie (IMPGA).
[24]  Farmer, G. and Wigley, T.M.L. (1985) Climatic Trends for Tropical Africa. Research Report University of East An-glia.
[25]  Kadi, D. (1995) Contribution à l’étude de la sécheresse sur le littoral algérien par le biais de traitement des données pluviométriques et la simula-tion. Master’s Thesis, Ecole Nationale Polytechnique d’Alger.
[26]  Mohammed, T. and Al-Amin, A.Q. (2018) Climate Change and Water Resources in Algeria: Vulnerability, Impact and Adaptation Strategy. Economic and Environmental Studies, 18, 411-429. https://doi.org/10.25167/ees.2018.45.23
[27]  WANG, J., Yang, B., Ljungqvist, F.C. and Zhao, Y. (2013) The Relationship between the Atlantic Multidecadal Oscillation and Temperature Variability in China during the Last Millennium. Journal of Quaternary Science, 28, 653-658. https://doi.org/10.1002/jqs.2658
[28]  Wambua, R.M., Mutua, B.M. and Raude, J.M. (2018) Detection of Spatial, Temporal and Trend of Meteorological Drought Using Standardized Precipitation Index (SPI) and Effective Drought Index (EDI) in the Upper Tana River Basin, Kenya. Open Journal of Modern Hydrology, 08, 83-100. https://doi.org/10.4236/ojmh.2018.83007
[29]  Spinoni, J., Barbosa, P., De Jager, A., McCormick, N., Naumann, G., Vogt, J.V., Magni, D., Masante, D., and Mazzeschi, M. (2019) A New Global Database of Meteorological Drought Events from 1951 to 2016. Journal of Hydrology: Regional Studies, 22, Article 100593. https://doi.org/10.1016/j.ejrh.2019.100593
[30]  Li, F., Li, H., Lu, W., Zhang, G. and Kim, J. (2019) Meteorological Drought Monitoring in Northeastern China Using Multiple Indices. Water, 11, Article 72. https://doi.org/10.3390/w11010072
[31]  Ojha, S.S., Singh, V. and Roshni, T. (2021) Comparison of Meteorological Drought Using SPI and SPEI. Civil Engi-neering Journal, 7, 2130-2149. https://doi.org/10.28991/cej-2021-03091783
[32]  Akter, M.L., Rahman, M.N., Azim, S.A., Rony, M.R.H., Sohel, M.S. and Abdo, H.G. (2023) Estimation of Drought Trends and Comparison between SPI and SPEI with Prediction Using Machine Learning Models in Rangpur, Bangladesh. Geology, Ecology, and Land-scapes. https://doi.org/10.1080/24749508.2023.2254003
[33]  Jimoh, O.D., Otache, M.Y., Adesiji, A.R., Olaleye, R.S. and Agajo, J. (2023) Characterisation of Meteorological Drought in Northern Nigeria Using Comparative Rainfall-Based Drought Metrics. Journal of Water Resource and Protection, 15, 51-70. https://doi.org/10.4236/jwarp.2023.152004
[34]  Gouveia, C.M., Bastos, A., Trigo, R.M. and DaCamara, C.C. (2017) Drought Impacts on Vegetation in the Pre- and Post-Fire Events over Iberian Peninsula. Natural Hazards and Earth System Sciences, 17, 1373-1389.
[35]  Parente, J., Pereira, L.S., Mendes, A.M., Shafique, M. and Koutsouris, A. (2019) Assessing Drought Impacts on Water Resources Using the Standardized Precipitation Index. Water Resources Man-agement, 33, 1071-1085
[36]  Bouras, K., Boudhar, A., Bounab, L. and Meddi, M. (2021) Impacts of Drought on Agricultural Productivity Using the Standard-ized Precipitation Index (SPI) in Algeria. Geoenvironmental Disasters, 8, Article 6.
[37]  Bentchakal, M., Medjerab, A., Chibane, B. and Rahmani, S.E.A. (2021) Meteorological Drought and Remote Sensing Data: An Approach to Assess Fire Risks in the Algerian Forest. Modeling Earth Systems and Environment, 8, 3847-3858. https://doi.org/10.1007/s40808-021-01323-0
[38]  Meddi, M., Meddi, H. and Assani, A.A. (2009) Drought Assessment Using the Standardized Precipitation Index (SPI) in Algeria. Water Resources Management, 23, 2711-2723. https://doi.org/10.1007/s11269-009-9404-2
[39]  Meddi, M. and Hubert, P. (2003) Impact of Changing Rainfall Patterns on Water Re-sources in Northwest Algeria. In: Servat, E., Najem, W., Leduc, C. and Shakeel, A., Eds., Hydrology of the Mediterranean and Semiarid Regions, International Association of Hydrological Sciences, 1-7.
[40]  Benlabiod, D. and Medjerab, A. (2014) Study of Climatic Drought in the Steppes of Southern Oran and Algiers Using the Standardized Precipitation Index. Revu Agroecology, 2, 58-68.
[41]  Merabti, A. and Meddi, M. (2016) Study of the Persistence of Drought on Seven Plains in Northeastern Algeria. Theoretical and Applied Cli-matology, 124, 103-116.
[42]  Hadri, A., Bounab, L., Khedim, M. and Meddi, M. (2021) Assessment of Drought Severity Using the Standardized Precipitation Index (SPI) in Northern Algeria. Environmental Monitoring and Assessment, 193, Article 502.
[43]  Medjerab, A. and Henia, L. (2005) Regionalisation of Annual Rainfall in the North-Western Parts of Algeria. Revue Géographique de l’Est, 45, 56-69. https://doi.org/10.4000/rge.501
[44]  Kettab, A., Ait Mouhoub, D., Ouarda, T. and Bobee, B. (2004) Contribution to the Study of the Phenomenon of Drought in the Coastal Regions of Algeria. National Polytechnic School, Algiers, Algeria.
[45]  Taïbi, S., Meddi, M. and Mahé, G. (2019) Seasonal Rainfall Variability in the Southern Mediterranean Border: Observations, Re-gional Model Simulations and Future Climate Projections. Atmósfera, 32, 39-54. https://doi.org/10.20937/atm.2019.32.01.04
[46]  Laborde, J.P. (1993) Rainfall Map of Northern Algeria at 1/500000 Scale. National Agency for Hy-draulic Resources, Project UNDP/ALG/88/021, a Map with Explanatory Note.
[47]  Achite, M., Wałęga, A., Toubal, A.K., Mansour, H. and Krakauer, N. (2021) Spatiotemporal Characteristics and Trends of Meteorological Droughts in the Wadi Mina Basin, Northwest Algeria. Water, 13, Article 3103. https://doi.org/10.3390/w13213103
[48]  Zerouali, B., Chettih, M., Abda, Z., Mesbah, M., Santos, C.A.G., Brasil Neto, R.M., et al. (2021) Spatiotemporal Me-teorological Drought Assessment in a Humid Mediterranean Region: Case Study of the Oued Sebaou Basin (Northern Central Algeria). Natural Hazards, 108, 689-709. https://doi.org/10.1007/s11069-021-04701-0
[49]  Derdous, O., Bouamrane, A. and Mrad, D. (2020) Spatiotemporal Analysis of Meteorological Drought in a Mediterranean Dry Land: Case of the Cheliff Basin-Algeria. Mod-eling Earth Systems and Environment, 7, 135-143. https://doi.org/10.1007/s40808-020-00951-2
[50]  Tifouri, Z., Yassen, A.N., Toumi, F. and Benyehia, M. (2019) Long-Term Drought Risk Management in North Africa: Case Study (Algeria and Egypt).
[51]  Berhail, S. and Katipoğlu, O.M. (2023) Comparison of the SPI and SPEI as Drought Assessment Tools in a Semi-Arid Region: Case of the Wadi Mekerra Basin (Northwest of Algeria). The-oretical and Applied Climatology, 154, 1373-1393. https://doi.org/10.1007/s00704-023-04601-2
[52]  Bouregaa, T. (2023) Change Point Detection and Trend Analysis of Drought over Algeria from 1901 to 2018. Arabian Journal of Geosciences, 16, Article No. 168. https://doi.org/10.1007/s12517-022-11174-3
[53]  Chourghal, N., Lhomme, J.P., Huard, F. and Aidaoui, A. (2015) Climate Change in Algeria and Its Impact on Durum Wheat. Regional Environmental Change, 16, 1623-1634. https://doi.org/10.1007/s10113-015-0889-8
[54]  Zeroual, A., Assani, A.A., Meddi, H., Bouabdelli, S., Zeroual, S. and Alkama, R. (2020) Assessment of Pro-jected Precipitations and Temperatures Change Signals over Algeria Based on Regional Climate Model: RCA4 Simulations. In: Negm, A.M., Bouderbala, A., Chenchouni, H. and Barceló, D., Eds., Water Resources in Algeria—Part I, Springer, 135-159. https://doi.org/10.1007/698_2020_526
[55]  Harris, I., Osborn, T.J., Jones, P. and Lister, D. (2020) Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate Dataset. Scientific Data, 7, Article No. 109. https://doi.org/10.1038/s41597-020-0453-3
[56]  New, M., Hulme, M. and Jones, P. (2000) Representing Twentieth-Century Space-Time Climate Variability. Part II: Development of 1901-96 Monthly Grids of Terrestrial Sur-face Climate. Journal of Climate, 13, 2217-2238. https://doi.org/10.1175/1520-0442(2000)013<2217:rtcstc>2.0.co;2
[57]  Nabat, P., Somot, S., Mallet, M., Sevault, F., Chiacchio, M. and Wild, M. (2014) Di-rect and Semi-Direct Aerosol Radiative Effect on the Mediterranean Climate Variability Using a Coupled Regional Climate System Model. Climate Dynamics, 44, 1127-1155. https://doi.org/10.1007/s00382-014-2205-6
[58]  Edwards, D.C. and McKee, T.B. (1997) Characteristics of 20th Century Drought in the United States at Multiple Time Scales. Climatology Report Number 97-2, Colo-rado State University.
[59]  Yihdego, Y. and Webb, J. (2016) Validation of a Model with Climatic and Flow Scenario Analysis: Case of Lake Burrumbeet in Southeastern Australia. Environmental Monitoring and Assessment, 188, Arti-cle No. 308. https://doi.org/10.1007/s10661-016-5310-7
[60]  Spinoni, J., Naumann, G., Vogt, J.V. and Barbosa, P. (2015) The Biggest Drought Events in Europe from 1950 to 2012. Journal of Hydrology: Regional Studies, 3, 509-524. https://doi.org/10.1016/j.ejrh.2015.01.001
[61]  Sheffield, J., Wood, E.F. and Roderick, M.L. (2012) Little Change in Global Drought over the Past 60 Years. Nature, 491, 435-438. https://doi.org/10.1038/nature11575
[62]  Yihdego, Y., Vaheddoost, B. and Al-Weshah, R.A. (2019) Drought Indices and Indicators Revisited. Arabian Journal of Geosciences, 12, Article No. 69. https://doi.org/10.1007/s12517-019-4237-z
[63]  Shekhar, A. and Shapiro, C.A. (2019) What Do Meteorological Indices Tell Us about a Long-Term Tillage Study. Soil and Tillage Research, 193, 161-170. https://doi.org/10.1016/j.still.2019.06.004
[64]  Mann, H.B. (1945) Non-parametric Tests against Trend. Econometrica, 13, 245. https://doi.org/10.2307/1907187
[65]  Kendall, M.G. (1975) Rank Correla-tion Methods (Charles Grifn). Oxford University Press.
[66]  Önöz, B. and Ba-yazit, M. (2012) Block Bootstrap for Mann-Kendall Trend Test of Serially De-pendent Data. Hydrological Processes, 26, 3552-3560. https://doi.org/10.1002/hyp.8438
[67]  Liu, Z., Wang, Y., Shao, M., Jia, X. and Li, X. (2016) Spatiotemporal Analysis of Multiscalar Drought Characteristics across the Loess Plateau of China. Journal of Hydrology, 534, 281-299. https://doi.org/10.1016/j.jhydrol.2016.01.003
[68]  Yue, S. and Pilon, P. (2004) A Comparison of the Power of the t test, Mann-Kendall and Bootstrap Tests for Trend Detection/Une Comparaison De La Puissance Des Tests t de Student, De Mann-Kendall Et Du Bootstrap Pour La Détection De Tendance. Hydrological Sciences Journal, 49, 21-37. https://doi.org/10.1623/hysj.49.1.21.53996
[69]  Sen, P.K. (1968) Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63, 1379-1389. https://doi.org/10.1080/01621459.1968.10480934
[70]  Azareh, A., Rahdari, M.R., Sardoii, E.R. and Moghadam, F.A. (2014) Investigate the Rela-tionship between Hydrological and Meteorological Droughts in Karaj Dam Basin. European journal of experimental biology, 4, 102-107.
[71]  Salehnia, N., Alizadeh, A., Sanaeinejad, H., Bannayan, M., Zarrin, A. and Hoogenboom, G. (2017) Estimation of Meteorological Drought Indices Based on Agmerra Precip-itation Data and Station-Observed Precipitation Data. Journal of Arid Land, 9, 797-809. https://doi.org/10.1007/s40333-017-0070-y
[72]  Walston, J.M., McAfee, S.A. and McEvoy, D.J. (2023) Evaluating Drought Indices for Alaska. Earth Interactions, 27, e220025. https://doi.org/10.1175/ei-d-22-0025.1
[73]  Temizel, A., Halici, T., Logoglu, B., Temizel, T.T., Omruuzun, F. and Karaman, E. (2011) Experiences on Image and Video Processing with CUDA and OpenCL. In: Hwu, W.W., Ed., GPU Compu-ting Gems Emerald Edition, Elsevier, 547-567. https://doi.org/10.1016/b978-0-12-384988-5.00034-6
[74]  Nettleton, D. (2014) Selection of Variables and Factor Derivation. In: Nettleton, D., Ed., Commercial Data Mining, Elsevier, 79-104. https://doi.org/10.1016/b978-0-12-416602-8.00006-6
[75]  Olive, D.J. (2003) Linear Regression Analysis. Technometrics, 45, 362-363. https://doi.org/10.1198/tech.2003.s163
[76]  Kumari, K. and Yadav, S. (2018) Linear Regression Analysis Study. Journal of the Practice of Cardiovas-cular Sciences, 4, 33-36. https://doi.org/10.4103/jpcs.jpcs_8_18
[77]  Asha, G. (2022) Linear Regression Analysis Theory and Computation. Quing: Interna-tional Journal of Innovative Research in Science and Engineering, 1, 39-57. https://doi.org/10.54368/qijirse.1.2.0002
[78]  Kilic, S. (2013) Doğrusal re-gresyon analizi. Journal of Mood Disorders, 3, 90-92. https://doi.org/10.5455/jmood.20130624120840
[79]  Hailesilassie, W.T., Ayenew, T. and Tekleab, S. (2023) A Comparative Study of Drought Character-istics Using Meteorological Drought Indices over the Central Main Ethiopian Rift. Hydrology Research, 54, 313-329. https://doi.org/10.2166/nh.2023.091
[80]  Henchiri, M., Igbawua, T., Javed, T., Bai, Y., Zhang, S., Essifi, B., Ujoh, F., and Zhang, J. (2021) Meteorological Drought Analysis and Return Periods over North and West Africa and Linkage with El Niño–Southern Oscillation (ENSO). Remote Sensing, 13, Article 4730. https://doi.org/10.3390/rs13234730
[81]  Henchiri, M., Liu, Q., Essifi, B., Javed, T., Zhang, S., Bai, Y., et al. (2020) Spatio-Temporal Patterns of Drought and Impact on Vegetation in North and West Africa Based on Multi-Satellite Da-ta. Remote Sensing, 12, Article 3869. https://doi.org/10.3390/rs12233869
[82]  Łabędzki, L. (2007) Estimation of Local Drought Frequency in Central Poland Using the Standardized Precipita-tion Index SPI. Irrigation and Drainage, 56, 67-77. https://doi.org/10.1002/ird.285
[83]  Sternberg, T., Thomas, D. and Middle-ton, N. (2011) Drought Dynamics on the Mongolian Steppe, 1970-2006. Inter-national Journal of Climatology, 31, 1823-1830. https://doi.org/10.1002/joc.2195
[84]  Haied, N., Foufou, A., Khadri, S., Boussaid, A., Azlaoui, M. and Bougherira, N. (2023) Spatial and Temporal As-sessment of Drought Hazard, Vulnerability and Risk in Three Different Climatic Zones in Algeria Using Two Commonly Used Meteorological Indices. Sustainabil-ity, 15, Article 7803. https://doi.org/10.3390/su15107803
[85]  Hasan, N.A., Dongkai, Y. and Al-Shibli, F. (2023) SPI and SPEI Drought Assessment and Pre-diction Using TBATS and ARIMA Models, Jordan. Water, 15, Article 3598. https://doi.org/10.3390/w15203598
[86]  Oksal, N.G.S. (2023) Comparative Analysis of the Influence of Temperature and Precipitation on Drought Assess-ment in the Marmara Region of Turkey: An Examination of SPI and SPEI Indi-ces. Journal of Water and Climate Change, 9, 3096-3111.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133