In this paper, we report the study of I-V characteristics for some metal work functions. The Schottky barrier structure is controlled by the metal work function using the MATLAB programming language. The study of the effect of metal work function proved its influence on device performance, and a significant dependence was observed between this parameter and the electrical parameters at room temperature. The temperature effect on the electrical characteristics of n-AlGaAs Schottky diodes has been investigated at various temperatures ranging from 50 K to 500 K. Thermionic emission theory is used to determine the electrical parameters of a device. As a result of I-V characteristics, the ideality factor (n) decreased with increasing temperature, while the barrier height (φbn ) increased. This strong dependence of Schottky diode parameters on temperature was attributed to the spatial inhomogeneity at the metal-semiconductor (MS) interface. By assuming a Gaussian distribution of the barrier heights at the MS interface, the inhomogeneity of the barrier height has been successfully explained. These results confirm the deviation of the TE current with decreasing temperature for Schottky diodes. These findings demonstrate that the n-AlGaAs structure exhibits a good diode and can be successfully applied in optoelectronic and photovoltaic applications.
Cite this paper
Bouzgarrou, S. and Al-Shamari, H. (2024). Theoretical Study on Electrical Properties of n-AlGaAs Schottky Barrier Diodes in a Diverse Temperature Range. Open Access Library Journal, 11, e2237. doi: http://dx.doi.org/10.4236/oalib.1112237.
Lukasiak, L. and Jakubowski, A. (2010) History of Semiconductors. Journal of Telecommunications and Information Tech-nology, No. 1, 3-9. https://doi.org/10.26636/jtit.2010.1.1015
Mesai, A.N., Lemkadem, I. and Benaouda, A. (2020) Etude de l’effet de temperature sur la diode Schottky. Master Thème, Université Echahid Hamma Lakhdar El-oued.
Ulusoy, M., Badali, Y., Pirgholi-Givi, G., Azizian-Kalandaragh, Y. and Altindal, S. (2023) The Capacitance/Conductance and Surface State Intensity Characteristics of the Schottky Structures with Ruthenium Dioxide-Doped Organic Polymer Interface. Synthetic Metals, 292, Article 117243. https://doi.org/10.1016/j.synthmet.2022.117243
Kocyigit, A., Yilmaz, M., Aydogan, S., Incekara, U. and Kacus, H. (2021) Comparison of N and P Type Si-Based Schottky Photodiode with Interlayered Congo Red Dye. Materials Science in Semiconductor Processing, 135, Article 106045. https://doi.org/10.1016/j.mssp.2021.106045
Bouzgarrou, S., Ben Salem, M.M., Hassen, F., Kalboussi, A. and Souifi, A. (2005) DLTS and PL Study of Defects in InALAs/InP Heterojunctions Grown by Metal Organic Chemical Vapor Deposition. Materials Science and Engineering: B, 116, 202-207. https://doi.org/10.1016/j.mseb.2004.10.007
Ben Salem, M.M., Bouzgarrou, S., Sghaier, N., Kalboussi, A. and Souifi, A. (2006) Correlation between Static Characteristics and Deep Levels in InALAs/InGaAs/InP HEMT’S. Materials Science and Engineering: B, 127, 34-40. https://doi.org/10.1016/j.mseb.2005.09.047
Bouzgarrou, S., Sghaier, N., Ben Salem, M.M., Souifi, A. and Kalboussi, A. (2008) Influence of Interface States and Deep Levels on Output Characteristics of InALAs/InGaAs/InP Hemts. Materials Science and Engineering: C, 28, 676-679. https://doi.org/10.1016/j.msec.2007.10.075
Bouzgarrou, S. (2013) Experimental and Theoretical Study of Parasitic Effects in InALAs/InGaAs/InP HEMT’S. American Journal of Physics and Applications, 1, 18-24. https://doi.org/10.11648/j.ajpa.20130101.14
Türüt, A. (2020) Oncurrent-Voltage and Capacitance-Voltage Charac-teristics of Metal-Semiconductor Contacts. Turkish Journal of Physics, 44, 302-347. https://doi.org/10.3906/fiz-2007-11
Asubay, S., Güllü, O. and Türüt, A. (2009) Determination of the Laterally Ho-mogeneous Barrier Height of Metal/p-InP Schottky Barrier Diodes. Vacuum, 83, 1470-1474. https://doi.org/10.1016/j.vacuum.2009.06.050
Sadoun, A. (2020) Extraction of the Electrical Parameters of the Au/InSb/InP Schottky Diode in the Temperature Range (300 K-425 K). International Journal of Energetica, 5, 31-37. https://doi.org/10.47238/ijeca.v5i1.120
Yildiz, D.E., Karadeniz, S., Yildirim, M., Tasaltin, N., Gulsaran, A., Bastug Azer, B., et al. (2024) Novel PANI: Borophene/Si Schottky Device for the Sensitive Detection of Illumination and NaCl Salt Solutions. Journal of Materials Science: Materials in Electronics, 35, Article No. 469. https://doi.org/10.1007/s10854-024-12243-x
Demirezen, S., Arslan Alsac, A., Cetinkaya, H.G. and Altindal, S. (2023) The Investigation of Current-Transport Mechanisms (CTMs) in the Al/(In2S3: PVA)/p-Si (MPS)-Type Schottky Bar-rier Diodes (SBDs) at Low and Intermediate Temperatures. Journal of Materials Science: Materials in Electronics, 34, Article No. 1186. https://doi.org/10.1007/s10854-023-10592-7
Buyukbas-Ulusan, A., Tataroglu, A. and Altindal-Yeriskin, S. (2023) Analysis of the Current Transport Characteristics (CTCs) in the Au/n-Si Schottky Diodes (SDs) with Al2O3 Interfa-cial Layer over Wide Temperature Range. ECS Journal of Solid State Science and Technology, 12, Article 083010. https://doi.org/10.1149/2162-8777/acf06e
Caughey, D.M. and Thomas, R.E. (1967) Carrier Mobilities in Silicon Empirically Related to Doping and Field. Proceedings of the IEEE, 55, 2192-2193. https://doi.org/10.1109/proc.1967.6123
Shockley, W. and Read, W.T. (1952) Statis-tics of the Recombinations of Holes and Electrons. Physical Review, 87, 835-842. https://doi.org/10.1103/physrev.87.835
Chattopadhyay, P. (1994) Effect of Localized States on the Cur-rent-Voltage Characteristics of Metal-Semiconductor Contacts with Thin Interfacial Layer. Solid-State Electronics, 37, 1759-1762. https://doi.org/10.1016/0038-1101(94)90223-2
Güllü, O. and Türüt, A. (2010) Electrical Analysis of Organic Dye-Based MIS Schottky Contacts. Microelectronic Engineering, 87, 2482-2487. https://doi.org/10.1016/j.mee.2010.05.004
TataroGlu, A., Altindal, S. and Azizian-Kalandaragh, Y. (2020) Compar-ison of Electrical Properties of MS and MPS Type Diode in Respect of (In2O3-PVP) Interlayer. Physica B: Condensed Matter, 576, Article 411733. https://doi.org/10.1016/j.physb.2019.411733
Alptekin, S., Tan, S.O. and Altindal, S. (2019) Determination of Surface States Energy Density Distributions and Relaxation Times for a Metal-Polymer-Semiconductor Structure. IEEE Transactions on Nanotechnology, 18, 1196-1199. https://doi.org/10.1109/tnano.2019.2952081
Stossel, M., Staudigel, J., Steuber, F., Simmerer, J. and Winnacker, A. (1999) Impact of the Cathode Metal Work Function on the Performance of Vacuum-Deposited Organic Light Emit-ting-Devices. Applied Physics A: Materials Science & Processing, 68, 387-390. https://doi.org/10.1007/s003390050910
Ghods, A. (2020) Design and Fabrication of Field-Effect III-V Schottky Junction Solar Cells. Doctoral Dissertations, Missouri University of Science and Technology.
Helal, H., Benamara, Z., Kacha, A.H., Amrani, M., Rabehi, A., Akkal, B., et al. (2019) Comparative Study of Ionic Bombardment and Heat Treatment on the Electrical Behavior of Au/GaN/n-GaAs Schottky Diodes. Superlattices and Microstructures, 135, Article 106276. https://doi.org/10.1016/j.spmi.2019.106276
Barkhordari, A., Ozcelik, S., Pirgholi-Givi, G., Mashay-ekhi, H.R., Altindal, S. and Azizian-Kalandaragh, Y. (2021) Dielectric Properties of PVP: BaTiO3 Interlayer in the Al/PVP: BaTiO3/P-Si Structure. Silicon, 14, 5437-5443. https://doi.org/10.1007/s12633-021-01196-z
Kim, D.M., Kim, D.H. and Lee, S.Y. (2007) Characterization and Modeling of Temperature-Dependent Barrier Heights and Ideality Factors in GaAs Schottky Diodes. Solid-State Electronics, 51, 865-869. https://doi.org/10.1016/j.sse.2007.04.006
Barkhordari, A., Mashayekhi, H.R., Amiri, P., Altindal, S. and Azizian-Kalandaragh, Y. (2024) Optoelectric Response of Schottky Photodiode with a PVP: ZnTiO3 Nanocomposite as an Interfacial Layer. Optical Materials, 148, Article 114787. https://doi.org/10.1016/j.optmat.2023.114787
Demirezen, S. (2019) The Role of Interface Traps, Series Resistance and (Ni-Doped PVA) Interlayer Effects on Electrical Characteristics in Al/p-Si (MS) Structures. Journal of Materials Science: Materials in Electronics, 30, 19854-19861. https://doi.org/10.1007/s10854-019-02352-3
Cicek, O., Tecimer, H.U., Tan, S.O., Tecimer, H., Altindal, S. and Uslu, I. (2016) Evaluation of Electrical and Photovoltaic Behaviours as Comparative of Au/N-GaAs (MS) Diodes with and without Pure and Graphene (Gr)-Doped Polyvinyl Alcohol (PVA) Interfacial Layer under Dark and Illuminated Conditions. Composites Part B: Engineering, 98, 260-268. https://doi.org/10.1016/j.compositesb.2016.05.042
Elamen, H., Badali, Y., Ulusoy, M., Azizian-Kalandaragh, Y., Altindal, S. and Güneser, M.T. (2023) The Photoresponse Behavior of a Schottky Structure with a Transition Metal Ox-ide-Doped Organic Polymer (RuO2: PVC) Interface. Polymer Bulletin, 81, 403-422. https://doi.org/10.1007/s00289-023-04725-5
Marnadu, R., Chandrasekaran, J., Vivek, P., Balasubramani, V. and Maruthamuthu, S. (2019) Impact of Phase Transformation in WO3 Thin Films at Higher Temperature and Its Compelling Interfacial Role in Cu/WO3/p-Si Structured Schottky Barrier Diodes. Zeitschrift für Physikalische Chemie, 234, 355-379. https://doi.org/10.1515/zpch-2018-1289
Badali, Y., Altan, H. and Altindal, S. (2024) Thermal Dependence on Electrical Characteristics of Au/(PVC: Sm2O3)/n-Si Structure. Journal of Materials Science: Materials in Electronics, 35, Article No. 228. https://doi.org/10.1007/s10854-023-11898-2
Demirezen, S., Ulusoy, M., Durmus, H., Cavusoglu, H., Yilmaz, K. and Altindal, S. (2023) Electrical and Photodetector Characteristics of Schottky Structures Interlaid with P(EHA) and P(EHA-co-AA) Functional Polymers by the iCVD Method. ACS Omega, 8, 46499-46512. https://doi.org/10.1021/acsomega.3c04935
Tascioglu, I., Pirgholi-Givi, G., Yeriskin, S.A. and Azizian-Kalandaragh, Y. (2023) Examination on the Current Conduction Mechanisms of Au/n-Si Diodes with ZnO-PVP and ZnO/Ag2WO4-PVP Inter-facial Layers. Journal of Sol-Gel Science and Technology, 107, 536-547. https://doi.org/10.1007/s10971-023-06177-9