全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Theoretical Study on Electrical Properties of n-AlGaAs Schottky Barrier Diodes in a Diverse Temperature Range

DOI: 10.4236/oalib.1112237, PP. 1-15

Subject Areas: Numerical Mathematics, Applied Physics, Theoretical Physics, Mathematics, Modern Physics

Keywords: Metal-Semiconductor Contacts, Thermionic Emission, Barrier Height, Electrical Behavior, Ideality Factor, Schottky Diodes

Full-Text   Cite this paper   Add to My Lib

Abstract

In this paper, we report the study of I-V characteristics for some metal work functions. The Schottky barrier structure is controlled by the metal work function using the MATLAB programming language. The study of the effect of metal work function proved its influence on device performance, and a significant dependence was observed between this parameter and the electrical parameters at room temperature. The temperature effect on the electrical characteristics of n-AlGaAs Schottky diodes has been investigated at various temperatures ranging from 50 K to 500 K. Thermionic emission theory is used to determine the electrical parameters of a device. As a result of I-V characteristics, the ideality factor (n) decreased with increasing temperature, while the barrier height (φbn ) increased. This strong dependence of Schottky diode parameters on temperature was attributed to the spatial inhomogeneity at the metal-semiconductor (MS) interface. By assuming a Gaussian distribution of the barrier heights at the MS interface, the inhomogeneity of the barrier height has been successfully explained. These results confirm the deviation of the TE current with decreasing temperature for Schottky diodes. These findings demonstrate that the n-AlGaAs structure exhibits a good diode and can be successfully applied in optoelectronic and photovoltaic applications.

Cite this paper

Bouzgarrou, S. and Al-Shamari, H. (2024). Theoretical Study on Electrical Properties of n-AlGaAs Schottky Barrier Diodes in a Diverse Temperature Range. Open Access Library Journal, 11, e2237. doi: http://dx.doi.org/10.4236/oalib.1112237.

References

[1]  Lukasiak, L. and Jakubowski, A. (2010) History of Semiconductors. Journal of Telecommunications and Information Tech-nology, No. 1, 3-9. https://doi.org/10.26636/jtit.2010.1.1015
[2]  Mesai, A.N., Lemkadem, I. and Benaouda, A. (2020) Etude de l’effet de temperature sur la diode Schottky. Master Thème, Université Echahid Hamma Lakhdar El-oued.
[3]  Reddy Nallabala, N.K., Vattikuti, S.V.P., Verma, V.K., Singh, V.R., Alhammadi, S., Kummara, V.K., et al. (2022) Highly Sensitive and Cost-Effective Metal-Semiconductor-Metal Asymmetric Type Schottky Metallization Based Ultraviolet Photodetecting Sensors Fabricated on N-Type GaN. Materials Science in Semiconductor Processing, 138, Article 106297. https://doi.org/10.1016/j.mssp.2021.106297
[4]  Ulusoy, M., Badali, Y., Pirgholi-Givi, G., Azizian-Kalandaragh, Y. and Altindal, S. (2023) The Capacitance/Conductance and Surface State Intensity Characteristics of the Schottky Structures with Ruthenium Dioxide-Doped Organic Polymer Interface. Synthetic Metals, 292, Article 117243. https://doi.org/10.1016/j.synthmet.2022.117243
[5]  Kocyigit, A., Yilmaz, M., Aydogan, S., Incekara, U. and Kacus, H. (2021) Comparison of N and P Type Si-Based Schottky Photodiode with Interlayered Congo Red Dye. Materials Science in Semiconductor Processing, 135, Article 106045. https://doi.org/10.1016/j.mssp.2021.106045
[6]  Bouzgarrou, S., Ben Salem, M.M., Hassen, F., Kalboussi, A. and Souifi, A. (2005) DLTS and PL Study of Defects in InALAs/InP Heterojunctions Grown by Metal Organic Chemical Vapor Deposition. Materials Science and Engineering: B, 116, 202-207. https://doi.org/10.1016/j.mseb.2004.10.007
[7]  Ben Salem, M.M., Bouzgarrou, S., Sghaier, N., Kalboussi, A. and Souifi, A. (2006) Correlation between Static Characteristics and Deep Levels in InALAs/InGaAs/InP HEMT’S. Materials Science and Engineering: B, 127, 34-40. https://doi.org/10.1016/j.mseb.2005.09.047
[8]  Bouzgarrou, S., Sghaier, N., Ben Salem, M.M., Souifi, A. and Kalboussi, A. (2008) Influence of Interface States and Deep Levels on Output Characteristics of InALAs/InGaAs/InP Hemts. Materials Science and Engineering: C, 28, 676-679. https://doi.org/10.1016/j.msec.2007.10.075
[9]  Bouzgarrou, S. (2013) Experimental and Theoretical Study of Parasitic Effects in InALAs/InGaAs/InP HEMT’S. American Journal of Physics and Applications, 1, 18-24. https://doi.org/10.11648/j.ajpa.20130101.14
[10]  Türüt, A. (2020) Oncurrent-Voltage and Capacitance-Voltage Charac-teristics of Metal-Semiconductor Contacts. Turkish Journal of Physics, 44, 302-347. https://doi.org/10.3906/fiz-2007-11
[11]  Asubay, S., Güllü, O. and Türüt, A. (2009) Determination of the Laterally Ho-mogeneous Barrier Height of Metal/p-InP Schottky Barrier Diodes. Vacuum, 83, 1470-1474. https://doi.org/10.1016/j.vacuum.2009.06.050
[12]  Sadoun, A. (2020) Extraction of the Electrical Parameters of the Au/InSb/InP Schottky Diode in the Temperature Range (300 K-425 K). International Journal of Energetica, 5, 31-37. https://doi.org/10.47238/ijeca.v5i1.120
[13]  Yildiz, D.E., Karadeniz, S., Yildirim, M., Tasaltin, N., Gulsaran, A., Bastug Azer, B., et al. (2024) Novel PANI: Borophene/Si Schottky Device for the Sensitive Detection of Illumination and NaCl Salt Solutions. Journal of Materials Science: Materials in Electronics, 35, Article No. 469. https://doi.org/10.1007/s10854-024-12243-x
[14]  Koksal, N.E., Sbeta, M., Atilgan, A. and Yildiz, A. (2021) Al-Ga Co-Doped ZnO/Si Heterojunction Diodes. Physica B: Condensed Matter, 600, Article 412599. https://doi.org/10.1016/j.physb.2020.412599
[15]  Demirezen, S., Arslan Alsac, A., Cetinkaya, H.G. and Altindal, S. (2023) The Investigation of Current-Transport Mechanisms (CTMs) in the Al/(In2S3: PVA)/p-Si (MPS)-Type Schottky Bar-rier Diodes (SBDs) at Low and Intermediate Temperatures. Journal of Materials Science: Materials in Electronics, 34, Article No. 1186. https://doi.org/10.1007/s10854-023-10592-7
[16]  Buyukbas-Ulusan, A., Tataroglu, A. and Altindal-Yeriskin, S. (2023) Analysis of the Current Transport Characteristics (CTCs) in the Au/n-Si Schottky Diodes (SDs) with Al2O3 Interfa-cial Layer over Wide Temperature Range. ECS Journal of Solid State Science and Technology, 12, Article 083010. https://doi.org/10.1149/2162-8777/acf06e
[17]  Choi, H., Jeon, J.D., Kim, S.E., Jang, S.Y., Sung, J.Y. and Lee, S.W. (2023) Strained BaTiO3 Thin Films via in-situ Crystallization Using Atomic Layer Deposition on SrTiO3 Substrate. Materials Science in Semiconductor Processing, 160, Article 107442. https://doi.org/10.1016/j.mssp.2023.107442
[18]  Sze, S.M. (1981) Physics of Semiconductor Devices. 2nd Edition, Wiley.
[19]  Caughey, D.M. and Thomas, R.E. (1967) Carrier Mobilities in Silicon Empirically Related to Doping and Field. Proceedings of the IEEE, 55, 2192-2193. https://doi.org/10.1109/proc.1967.6123
[20]  Selberherr, S. (1984) Process and Device Modeling for Visi. Microelectron-ics Reliability, 24, 225-257. https://doi.org/10.1016/0026-2714(84)90450-5
[21]  Selberherr, S. (2012) Analysis and Simulation of Semiconductor Devices. Springer Science & Business Media.
[22]  Shockley, W. and Read, W.T. (1952) Statis-tics of the Recombinations of Holes and Electrons. Physical Review, 87, 835-842. https://doi.org/10.1103/physrev.87.835
[23]  Schroder, D.K. (2005) Semiconductor Material and Device Characteriza-tion. Wiley. https://doi.org/10.1002/0471749095
[24]  Hudait, M.K. and Krupanidhi, S.B. (2000) Effects of Thin Oxide in Metal-Semiconductor and Metal-Insulator-Semiconductor Epi-GaAs Schottky Diodes. Solid-State Electronics, 44, 1089-1097. https://doi.org/10.1016/s0038-1101(99)00320-2
[25]  Chattopadhyay, P. (1994) Effect of Localized States on the Cur-rent-Voltage Characteristics of Metal-Semiconductor Contacts with Thin Interfacial Layer. Solid-State Electronics, 37, 1759-1762. https://doi.org/10.1016/0038-1101(94)90223-2
[26]  Güllü, O. and Türüt, A. (2010) Electrical Analysis of Organic Dye-Based MIS Schottky Contacts. Microelectronic Engineering, 87, 2482-2487. https://doi.org/10.1016/j.mee.2010.05.004
[27]  TataroGlu, A., Altindal, S. and Azizian-Kalandaragh, Y. (2020) Compar-ison of Electrical Properties of MS and MPS Type Diode in Respect of (In2O3-PVP) Interlayer. Physica B: Condensed Matter, 576, Article 411733. https://doi.org/10.1016/j.physb.2019.411733
[28]  Alptekin, S., Tan, S.O. and Altindal, S. (2019) Determination of Surface States Energy Density Distributions and Relaxation Times for a Metal-Polymer-Semiconductor Structure. IEEE Transactions on Nanotechnology, 18, 1196-1199. https://doi.org/10.1109/tnano.2019.2952081
[29]  Stossel, M., Staudigel, J., Steuber, F., Simmerer, J. and Winnacker, A. (1999) Impact of the Cathode Metal Work Function on the Performance of Vacuum-Deposited Organic Light Emit-ting-Devices. Applied Physics A: Materials Science & Processing, 68, 387-390. https://doi.org/10.1007/s003390050910
[30]  Vick, A.J. (2011) Measuring Low Dimensional Schottky Barriers of Rare Earth Silicide-Silicon Interfaces. PhD Thesis, University of York.
[31]  Ghods, A. (2020) Design and Fabrication of Field-Effect III-V Schottky Junction Solar Cells. Doctoral Dissertations, Missouri University of Science and Technology.
[32]  Helal, H., Benamara, Z., Kacha, A.H., Amrani, M., Rabehi, A., Akkal, B., et al. (2019) Comparative Study of Ionic Bombardment and Heat Treatment on the Electrical Behavior of Au/GaN/n-GaAs Schottky Diodes. Superlattices and Microstructures, 135, Article 106276. https://doi.org/10.1016/j.spmi.2019.106276
[33]  Hou, L., Hou, Y., Zhu, M., Tang, J., Liu, J., Wang, H., et al. (2005) Formation and Transformation of ZnTiO3 Prepared by Sol-Gel Process. Materials Letters, 59, 197-200. https://doi.org/10.1016/j.matlet.2004.07.046
[34]  Barkhordari, A., Ozcelik, S., Pirgholi-Givi, G., Mashay-ekhi, H.R., Altindal, S. and Azizian-Kalandaragh, Y. (2021) Dielectric Properties of PVP: BaTiO3 Interlayer in the Al/PVP: BaTiO3/P-Si Structure. Silicon, 14, 5437-5443. https://doi.org/10.1007/s12633-021-01196-z
[35]  Reddy, P.R.S., Ja-nardhanam, V., Shim, K., Reddy, V.R., Lee, S., Park, S., et al. (2020) Temperature-Dependent Schottky Barrier Parameters of Ni/Au on N-Type (001) β-Ga2O3 Schottky Barrier Diode. Vacuum, 171, Article 109012. https://doi.org/10.1016/j.vacuum.2019.109012
[36]  Kim, D.M., Kim, D.H. and Lee, S.Y. (2007) Characterization and Modeling of Temperature-Dependent Barrier Heights and Ideality Factors in GaAs Schottky Diodes. Solid-State Electronics, 51, 865-869. https://doi.org/10.1016/j.sse.2007.04.006
[37]  Barkhordari, A., Mashayekhi, H.R., Amiri, P., Altindal, S. and Azizian-Kalandaragh, Y. (2024) Optoelectric Response of Schottky Photodiode with a PVP: ZnTiO3 Nanocomposite as an Interfacial Layer. Optical Materials, 148, Article 114787. https://doi.org/10.1016/j.optmat.2023.114787
[38]  Nawar, A.M., Abd-Elsalam, M., El-Mahalawy, A.M. and El-Nahass, M.M. (2020) Analyzed Electrical Performance and Induced In-terface Passivation of Fabricated Al/NTCDA/P-Si MIS-Schottky Heterojunction. Applied Physics A, 126, Article No. 113. https://doi.org/10.1007/s00339-020-3289-y
[39]  Demirezen, S. (2019) The Role of Interface Traps, Series Resistance and (Ni-Doped PVA) Interlayer Effects on Electrical Characteristics in Al/p-Si (MS) Structures. Journal of Materials Science: Materials in Electronics, 30, 19854-19861. https://doi.org/10.1007/s10854-019-02352-3
[40]  Cicek, O., Tecimer, H.U., Tan, S.O., Tecimer, H., Altindal, S. and Uslu, I. (2016) Evaluation of Electrical and Photovoltaic Behaviours as Comparative of Au/N-GaAs (MS) Diodes with and without Pure and Graphene (Gr)-Doped Polyvinyl Alcohol (PVA) Interfacial Layer under Dark and Illuminated Conditions. Composites Part B: Engineering, 98, 260-268. https://doi.org/10.1016/j.compositesb.2016.05.042
[41]  Elamen, H., Badali, Y., Ulusoy, M., Azizian-Kalandaragh, Y., Altindal, S. and Güneser, M.T. (2023) The Photoresponse Behavior of a Schottky Structure with a Transition Metal Ox-ide-Doped Organic Polymer (RuO2: PVC) Interface. Polymer Bulletin, 81, 403-422. https://doi.org/10.1007/s00289-023-04725-5
[42]  Werner, J.H. and Güttler, H.H. (1991) Barrier Inhomogeneities at Schottky Contacts. Journal of Applied Physics, 69, 1522-1533. https://doi.org/10.1063/1.347243
[43]  Marnadu, R., Chandrasekaran, J., Vivek, P., Balasubramani, V. and Maruthamuthu, S. (2019) Impact of Phase Transformation in WO3 Thin Films at Higher Temperature and Its Compelling Interfacial Role in Cu/WO3/p-Si Structured Schottky Barrier Diodes. Zeitschrift für Physikalische Chemie, 234, 355-379. https://doi.org/10.1515/zpch-2018-1289
[44]  Badali, Y., Altan, H. and Altindal, S. (2024) Thermal Dependence on Electrical Characteristics of Au/(PVC: Sm2O3)/n-Si Structure. Journal of Materials Science: Materials in Electronics, 35, Article No. 228. https://doi.org/10.1007/s10854-023-11898-2
[45]  Demirezen, S., Ulusoy, M., Durmus, H., Cavusoglu, H., Yilmaz, K. and Altindal, S. (2023) Electrical and Photodetector Characteristics of Schottky Structures Interlaid with P(EHA) and P(EHA-co-AA) Functional Polymers by the iCVD Method. ACS Omega, 8, 46499-46512. https://doi.org/10.1021/acsomega.3c04935
[46]  Tascioglu, I., Pirgholi-Givi, G., Yeriskin, S.A. and Azizian-Kalandaragh, Y. (2023) Examination on the Current Conduction Mechanisms of Au/n-Si Diodes with ZnO-PVP and ZnO/Ag2WO4-PVP Inter-facial Layers. Journal of Sol-Gel Science and Technology, 107, 536-547. https://doi.org/10.1007/s10971-023-06177-9

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133