%0 Journal Article %T Effective Cache Configuration for High Performance Embedded Systems %J American Journal of Computer Architecture %@ TBD %D 2012 %I %R 10.5923/j.ajca.20120101.01 %X Any embedded system contains both on-chip and off-chip memory modules with different access times. During system integration, the decision to map critical data on to faster memories is crucial. In order to obtain good performance targeting less amounts of memory, the data buffers of the application need to be placed carefully in different types of memory. There have been huge research efforts intending to improve the performance of the memory hierarchy. Recent advancements in semiconductor technology have made power consumption also a limiting factor for embedded system design. SRAM being faster than the DRAM, cache memory comprising of SRAM is configured between the CPU and the main memory. The CPU can access the main memory (DRAM) only via the cache memory. Cache memories are employed in all the computing applications along with the processors. The size of cache allowed for inclusion on a chip is limited by the large physical size and large power consumption of the SRAM cells used in cache memory. Hence, its effective configuration for small size and low power consumption is very crucial in embedded system design. We present an optimal cache configuration technique for the effective reduction of size and high performance. The proposed methodology was tested in real time hardware using FPGA. Matrix multiplication algorithm with various sizes of workloads is hence validated. For the validation of the proposed approach we have used Xilinx ISE 9.2i for simulation and synthesis purposes. The prescribed design was implemented in VHDL. %K Cache %K Access Time %K Miss Rate %K Performance %U http://article.sapub.org/10.5923.j.ajca.20120101.01.html