%0 Journal Article %T Application of Thermal Barrier Coatings in Diesel Engines: a Review %J Energy and Power %@ 2163-1603 %D 2012 %I %R 10.5923/j.ep.20120201.02 %X A review of research on low heat rejection engines, to incorporate various systems of ceramic materials in intermittent combustion engines, and on the use of ceramics in these engines is presented. The reduction of heat loss from the combustion chamber of diesel engines improves fuel efficiency only by 3 or 4 per cent. Some other gains may be possible from a smaller cooling system, recovery of exhaust energy, and improvements in aerodynamics. The use of thermal barrier coatings (TBCs) to increase the combustion temperature in diesel engines has been pursued for over 20 years. Increased combustion temperature can increase the efficiency of the engine, decrease the CO and (possibly) the NOx emission rate. However, TBCs have not yet met with wide success in diesel engine applications because of various problems associated with the thermomechanical properties of the coating materials. Although, the in-cylinder temperatures that can be achieved by the application of ceramic coatings can be as high as 850-9000C compared to current temperatures of 650-7000C. The increase in the in-cylinder temperatures helped in better release of energy in the case of biodiesel fuels thereby reducing emissions at, almost the same performance as the diesel fuel. The purpose of this paper is to explain the effect of insulation on engine performance, heat transfer characteristics, combustion and emission characteristics. Many researchers have carried out a large number of studieson Low Heat Rejection Engine (LHRE) concept. Some of them are experimental work and many are theoretical studies. In the case of LHR engines almost all theoretical studies predict improved performance but many experimental studies show different picture. This paper analyses the reason for this deviation. The operating conditions, under which the experimental and simulation studies are carried out, have been clearly discussed. The factors, which affect thermal efficiency, combustion, and exhaust emissions in LHR engine, are deduced and their influences discussed. %K Thermal Barrier Coatings %K Low Heat Rejection Engine %K Biodiesel %U http://article.sapub.org/10.5923.j.ep.20120201.02.html