%0 Journal Article
%T Study of Finite Elements for Hamilton Systems
Hamilton系统的有限元研究
%A Chen Chuanmiao Tang Qiong
%A
陈传淼
%A 汤琼
%J 数学物理学报(A辑)
%D 2011
%I
%X Two nice properties of the continuous finite element method for Hamilton systems are proved as follows: in any case the m-degree finite elements always preserve the energy which is sympletic for linear systems and is approximately sympletic with high accuracy O(h2m+1) in each stepping for nonlinear systems. In long-time computation the deviation of trajectories and their periods in time-space plane will crease linearly with time. Numerical experiments show that their deviations are often smaller than that of other schemes.
%K Hamilton systemszz
%K
%K Nonlinearzz
%K Finite elementszz
%K Energy conservationzz
%K Sympleticityzz
%K
%K Long-time errorzz
Hamilton系统
%K 非线性
%K 有限元
%K 能量守恒
%K 辛性质
%K 长时间误差
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=4DB553CDB5F521D8C921082E5C95EC80&aid=5AA2F19E8DE00ECE32E9E8B849CA65CC&yid=9377ED8094509821&vid=4AD960B5AD2D111A&iid=CA4FD0336C81A37A&sid=13553B2D12F347E8&eid=27746BCEEE58E9DC&journal_id=1003-3998&journal_name=数学物理学报(A辑)&referenced_num=0&reference_num=19